Bánh chuyển đổi MRI chức năng nhắm vào PDGFB cho chẩn đoán siêu nhạy hoạt hóa T1–T2 hai chế độ về ung thư

Journal of Nanobiotechnology - Tập 21 - Trang 1-13 - 2023
Ya’nan Zhang1,2, Lu Liu1,3, Wenling Li1,3, Caiyun Zhang1,3, Tianwei Song1,3, Peng Wang1,3, Daxi Sun1,3, Xiaodan Huang1,3, Xia Qin1,3, Lang Ran1,3, Geng Tian1, Junchao Qian2,4, Guilong Zhang1,3
1School of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, People’s Republic of China
2Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
3School of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, People’s Republic of China
4Department of Radiation Oncology, School of Medicine, Shandong University, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China

Tóm tắt

Là một trong những phương pháp hình ảnh quan trọng nhất hiện nay, chụp cộng hưởng từ (MRI) đã được sử dụng rộng rãi để chẩn đoán ung thư chính xác về lâm sàng. Tuy nhiên, tỉ số tín hiệu trên nhiễu (SNR) thấp và độ đặc hiệu thấp cho các khối u vẫn tiếp tục đặt ra những thách thức đáng kể. Được lấy cảm hứng từ hiện tượng điều chỉnh cộng hưởng từ phụ thuộc khoảng cách (MRET), công tắc nano MRI hai chế độ T1–T2 được kích hoạt bởi môi trường vi mô của khối u (TME) được giới thiệu trong nghiên cứu này nhằm đạt được chẩn đoán sớm nhạy cảm cho các khối u. Công tắc nano đặc hiệu cho khối u được thiết kế và chế tạo dựa trên PDGFB-gắn kết ferroferric oxide được phủ bởi silica nhiễm Mn (PDGFB-FMS), có thể bị phân hủy dưới nồng độ cao của GSH và pH thấp trong TME để kích hoạt các tín hiệu MRI hai chế độ T1–T2. Công tắc nano MRI hai chế độ off–on đặc hiệu cho khối u có thể cải thiện đáng kể SNR và đã được sử dụng thành công cho chẩn đoán chính xác các khối u ở giai đoạn sớm, đặc biệt là đối với ung thư tuyến tiền liệt tại chỗ. Bên cạnh đó, việc chuyển giao hệ thống công tắc nano không gây tổn thương cho máu hoặc mô, và nó có thể được thải ra ngoài cơ thể một cách kịp thời, thể hiện độ an toàn sinh học tuyệt vời. Tóm lại, chiến lược này là một bước tiến quan trọng trong việc thiết kế các đầu dò nano MRI hai chế độ off–on nhằm cải thiện độ chính xác hình ảnh, mở ra những con đường mới cho sự phát triển của các đầu dò MRI mới.

Từ khóa

#chụp cộng hưởng từ #ung thư #công tắc nano #PDGFB #hình ảnh y học

Tài liệu tham khảo

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. Liu C, Zhao J, Tian F, Cai L, Zhang W, Feng Q, et al. Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers. Nat Biomed Eng. 2019;3(3):183–93. Liang Z, Wang Q, Liao H, Zhao M, Lee J, Yang C, et al. Artificially engineered antiferromagnetic nanoprobes for ultra-sensitive histopathological level magnetic resonance imaging. Nat Commun. 2021;12(1):3840. Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009;21(21):2133–48. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80. Zhou Z, Yang L, Gao J, Chen X. Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv Mater. 2019;31(8):1804567. Shin TH, Choi Y, Kim S, Cheon J. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev. 2015;44(14):4501–16. Angelovski G. What we can really do with bioresponsive MRI contrast agents. Angew Chem Int Ed Engl. 2016;55(25):7038–46. Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev. 2019;119(2):957–1057. Lee SH, Kim BH, Na HB, Hyeon T. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(2):196–209. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015;115(19):10637–89. Ahmed HU, Kirkham A, Arya M, Illing R, Freeman A, Allen C, et al. Is it time to consider a role for MRI before prostate biopsy? Nat Rev Clin Oncol. 2009;6(4):197–206. Na HB, Hyeon T. Nanostructured T1 MRI contrast agents. J Mater Chem. 2009;19:6267–73. Na HB, Lee JH, An K, Park YI, Park M, Lee IS, et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl. 2007;46(28):5397–401. Shin TH, Choi JS, Yun S, Kim IS, Song HT, Kim Y, et al. T1 and T2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano. 2014;8(4):3393–401. Choi JS, Lee JH, Shin TH, Song HT, Kim EY, Cheon J. Self-confirming, “AND” logic nanoparticles for fault-free MRI. J Am Chem Soc. 2010;132(32):11015–7. Choi JS, Kim S, Yoo D, Shin TH, Kim H, Gomes MD, et al. Distance-dependent magnetic resonance tuning as a versatile MRI sensing platform for biological targets. Nat Mater. 2017;16(5):537–42. Santra S, Jativa SD, Kaittanis C, Normand G, Grimm J, Perez JM. Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS Nano. 2012;6(8):7281–94. Shin TH, Kang S, Park S, Choi JS, Kim PK, Cheon J. A magnetic resonance tuning sensor for the MRI detection of biological targets. Nat Protoc. 2018;13(11):2664–84. Zhu X, Lin H, Wang L, Tang X, Ma L, Chen Z, Gao J. Activatable T1 relaxivity recovery nanoconjugates for kinetic and sensitive analysis of matrix metalloprotease 2. ACS Appl Mater Interfaces. 2017;9(26):21688–96. Kim MH, Son HY, Kim GY, Park K, Huh YM, Haam S. Redoxable heteronanocrystals functioning magnetic relaxation switch for activatable T1 and T2 dual-mode magnetic resonance imaging. Biomaterials. 2016;101:121–30. Zheng Z, Sun H, Hu C, Li G, Liu X, Chen P, et al. Using “on/off” (19)F NMR/magnetic resonance imaging signals to sense tyrosine kinase/phosphatase activity in vitro and in cell lysates. Anal Chem. 2016;88(6):3363–8. Zhou C, Zhang L, Sun T, Zhang Y, Liu Y, Gong M, et al. Activatable NIR-II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy. Adv Mater. 2021;33(3):2006532. Yu L, Chen Y, Wu M, Cai X, Yao H, Zhang L, Chen H, Shi J. “Manganese extraction” strategy enables tumor-sensitive biodegradability and theranostics of nanoparticles. J Am Chem Soc. 2016;138(31):9881–94. Liu K, Kang B, Luo X, Yang Z, Sun C, Li A, Fan Y, Chen X, Gao J, Lin H. Redox-activated contrast-enhanced T1-weighted imaging visualizes glutathione-mediated biotransformation dynamics in the liver. ACS Nano. 2021;15(11):17831–41. Thies KA, Hammer AM, Hildreth BE, Steck SA, Spehar JM, et al. Stromal platelet-derived growth factor receptor-β signaling promotes breast cancer metastasis in the brain. Cancer Res. 2021;81(3):606–18. Ustach CV, Huang W, Conley-LaComb MK, Lin CY, Che M, Abrams J, et al. A novel signaling axis of matriptase/PDGF-D/β-PDGFR in human prostate cancer. Cancer Res. 2010;70(23):9631–40. Conley-LaComb MK, Huang W, Wang S, Shi D, Jung YS, Najy A, et al. PTEN regulates PDGF ligand switch for beta-PDGFR signaling in prostate cancer. Am J Pathol. 2012;180(3):1017–27. Yuzawa S, Kano MR, Einama T, Nishihara H. PDGFRbeta expression in tumor stroma of pancreatic adenocarcinoma as a reliable prognostic marker. Med Oncol. 2012;29(4):2824–30. Du S, Yang Z, Lu X, et al. Anoikis resistant gastric cancer cells promote angiogenesis and peritoneal metastasis through C/EBPbeta-mediated PDGFB autocrine and paracrine signaling. Oncogene. 2021;40(38):5764–79. Kadrmas JL, Beckerle MC, Yoshigi M. Genetic analyses in mouse fibroblast and melanoma cells demonstrate novel roles for PDGF-AB ligand and PDGF receptor alpha. Sci Rep. 2020;10(1):19303. Wang X, Qian T, Bao S, et al. Circulating exosomal miR-363-5p inhibits lymph node metastasis by downregulating PDGFB and serves as a potential noninvasive biomarker for breast cancer. Mol Oncol. 2021;15(9):2466–79. Ji Q, Guo C, Yu X, Ochs CJ, Hill JP, Caruso F, et al. Flake-shell capsules: adjustable inorganic structures. Small. 2012;8(15):2345–9. Xiao J, Zhang G, Qian J, Sun X, Tian J, Zhong K, et al. Fabricating high-performance T2-weighted contrast agents via adjusting composition and size of nanomagnetic iron oxide. ACS Appl Mater Interfaces. 2018;10(8):7003–11. Si Y, Zhang G, Wang D, Zhang C, Yang C, Bai G, et al. Nanostructure-enhanced water interaction to increase the dual-mode MR contrast performance of gadolinium-doped iron oxide nanoclusters. Chem Eng J. 2019;360:289–98. Nordby Y, Richardsen E, Rakaee M, et al. High expression of PDGFR-beta in prostate cancer stroma is independently associated with clinical and biochemical prostate cancer recurrence. Sci Rep. 2017;7:43378. Jitariu AA, Raica M, Cimpean AM, et al. The role of PDGF-B/PDGFR-BETA axis in the normal development and carcinogenesis of the breast. Crit Rev Oncol Hematol. 2018;131:46–52. Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT, Morris JC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol. 2015;33(1):74–82. Yuan Y, Wei Z, Chu C, Zhang J, Song X, Walczak P, et al. Development of zinc-specific iCEST MRI as an imaging biomarker for prostate cancer. Angew Chem Int Ed Engl. 2019;58(43):15512–7. Xiang H, Zhao L, Yu L, Chen H, Wei C, Chen Y, et al. Self-assembled organic nanomedicine enables ultrastable photo-to-heat converting theranostics in the second near-infrared biowindow. Nat Commun. 2021;12(1):218. Zhang TT, Xu CH, Zhao W, Gu Y, Li XL, Xu JJ, et al. A redox-activated theranostic nanoagent: toward multi-mode imaging guided chemo-photothermal therapy. Chem Sci. 2018;9(33):6749–57. Zhang J, Yang C, Zhang R, Chen R, Zhang Z, Zhang W, et al. Biocompatible D-A semiconducting polymer nanoparticle with light-harvesting unit for highly effective photoacoustic imaging guided photothermal therapy. Adv Funct Mater. 2017;27(13):1605094.