PCA-based multivariate statistical network monitoring for anomaly detection
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alcala, 2011, Analysis and generalization of fault diagnosis methods for process monitoring, J Process Contr, 21, 322, 10.1016/j.jprocont.2010.10.005
Alcala, 2009, Reconstruction-based contribution for process monitoring, Automatica, 45, 1593, 10.1016/j.automatica.2009.02.027
Arteaga, 2002, Dealing with missing data in MSPC: several methods, different interpretations, some examples, J Chemometr, 16, 408, 10.1002/cem.750
Bhuyan, 2014, Network anomaly detection: methods, systems and tools, IEEE Commun Surv Tut, 16, 303, 10.1109/SURV.2013.052213.00046
Boardman, 1994, The statistician who changed the world: W. Edwards Deming, 1900–1993, Am Stat, 48, 179, 10.1080/00031305.1994.10476053
Bodenham, 2013
Box, 1954, Some theorems on quadratic forms applied in the study of analysis of variance problems: effect of inequality of variance in one-way classification, Ann. Math. Stat, 25, 290, 10.1214/aoms/1177728786
Brauckhoff, 2009, Applying PCA for traffic anomaly detection: problems and solutions, Proceedings – IEEE INFOCOM, 2866, 10.1109/INFCOM.2009.5062248
Callegari, 2011
Callegari, 2011
Camacho, 2007
Camacho, 2011, Observation-based missing data methods for exploratory data analysis to unveil the connection between observations and variables in latent subspace models, J Chemometr, 25, 592, 10.1002/cem.1405
Camacho, 2014, Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: practical aspects, Chemometr Intell Lab Syst, 131, 37, 10.1016/j.chemolab.2013.12.003
Camacho, 2006, Online monitoring of batch processes using multi-phase principal component analysis, J Process Contr, 16, 1021, 10.1016/j.jprocont.2006.07.005
Camacho, 2008, Bilinear modelling of batch processes. Part I: theoretical discussion, J Chemometr, 22, 299, 10.1002/cem.1113
Camacho, 2009, On-line monitoring of batch processes based on PCA: does the modelling structure matter?, Anal Chim Acta, 642, 59, 10.1016/j.aca.2009.02.001
Camacho, 2014, Tackling the big data 4 vs for anomaly detection, INFOCOM '2014 Workshop on Security and Privacy in Big Data
Camacho, 2015, Multivariate exploratory data analysis (meda) toolbox for Matlab, Chemometr Intell Lab Syst, 143, 49, 10.1016/j.chemolab.2015.02.016
Chatzigiannakis, 2009, Improving network anomaly detection effectiveness via an integrated multi-metric-multi-link (M3L) PCA-based approach, Secur. Commun. Netw, 2, 289, 10.1002/sec.69
Chen, 2002
Delimargas, 2014
Dunia, 1998, Subspace approach to multidimensional fault identification and reconstruction, AIChE J, 44, 1813, 10.1002/aic.690440812
Dusi, 2012
Faber, 2007, How to avoid over-fitting in multivariate calibration – the conventional validation approach and an alternative, Anal Chim Acta, 595, 98, 10.1016/j.aca.2007.05.030
Ferrer, 2014, Latent structures-based multivariate statistical process control: a paradigm shift, Qual. Eng, 26, 72, 10.1080/08982112.2013.846093
Garcia-Teodoro, 2009, Anomaly-based network intrusion detection: techniques, systems and challenges, Comput Secur, 28, 18, 10.1016/j.cose.2008.08.003
González-Martínez, 2011, Real-time synchronization of batch trajectories for on-line multivariate statistical process control using Dynamic Time Warping, Chemometr Intell Lab Syst, 105, 195, 10.1016/j.chemolab.2011.01.003
Hakami, 2008
Hotelling, 1947, Multivariate quality control
Hu, 2008
Huang, 2006
Jackson, 2003
Jackson, 1979, Control procedures for residuals associated with Principal Component Analysis, Technometrics, 21, 331, 10.1080/00401706.1979.10489779
Kanaoka, 2003
Kanda, 2013, ADMIRE: anomaly detection method using entropy-based PCA with three-step sketches, Comput Commun, 36, 575, 10.1016/j.comcom.2012.12.002
Kassidas, 1998, Synchronization of batch trajectories using dynamic time warping, AIChE J, 44, 864, 10.1002/aic.690440412
Kim, 2009
Kourti, 1996, Multivariate SPC methods for process and product monitoring, J Qual Technol, 28, 409, 10.1080/00224065.1996.11979699
Kourti, 1995, Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS, J Process Contr, 5, 277, 10.1016/0959-1524(95)00019-M
Kresta, 1991, Multivariate statistical monitoring of process operating performance, Can J Chem Eng, 69, 35, 10.1002/cjce.5450690105
Ku, 1995, Disturbance detection and isolation by dynamic principal component analysis, Chemometr Intell Lab Syst, 30, 179, 10.1016/0169-7439(95)00076-3
Kwitt, 2007
Lakhina, 2004, Diagnosing network-wide traffic anomalies, ACM SIGCOMM Comput Commun Rev, 34, 219, 10.1145/1030194.1015492
Lakhina, 2005, Mining anomalies using traffic feature distributions, ACM SIGCOMM Comput Commun Rev, 35, 217, 10.1145/1090191.1080118
Lindgren, 1996, Model validation by permutation tests: applications to variable selection, J Chemometr, 10, 521, 10.1002/(SICI)1099-128X(199609)10:5/6<521::AID-CEM448>3.0.CO;2-J
Liu, 2014
Liu, 2010
Livani, 2010
MacGregor, 1995, Statistical process control of multivariate processes, Control Eng Pract, 3, 403, 10.1016/0967-0661(95)00014-L
MacGregor, 1994, Process monitoring and diagnosis by multiblock PLS methods, AIChE J, 40, 826, 10.1002/aic.690400509
Magan-Carrion, 2015, Multivariate statistical approach for anomaly detection and lost data recovery in wireless sensor networks, Int J Distrib Sens N, 2015, 1
Marty, 2008
Milting, 2013, Genomics of myocardial recovery in patients with mechanical circulatory support, J Heart Lung Transplant, 32, 229, 10.1016/j.healun.2013.01.582
Münz, 2010
Nelson, 1996, Missing data methods in PCA and PLS: score calculations with incomplete observations, Chemometr Intell Lab Syst, 35, 45, 10.1016/S0169-7439(96)00007-X
Nielsen, 1998, Aligning of single and multiple wavelength chromatographic profiles for chemometrics data analysis using correlation optimised warping, J Chromatogr, 805, 17, 10.1016/S0021-9673(98)00021-1
Nomikos, 1995, Multivariate statistical process control charts for monitoring batch processes, Technometrics, 37, 41, 10.1080/00401706.1995.10485888
Nomikos, 1994, Monitoring batch processes using multiway principal component analysis, AIChE J, 40, 1361, 10.1002/aic.690400809
Novakov, 2013
Om, 2012, Statistical techniques in anomaly intrusion detection system, IJATEE, 5, 387
Qu, 2005
Ramaker, 2006, Performance assessment and improvement of control charts for statistical batch process monitoring, Stat Neerl, 60, 339, 10.1111/j.1467-9574.2006.00337.x
Ringberg, 2007, Sensitivity of PCA for traffic anomaly detection, ACM Sigmetrics Perform Eval Rev, 35, 109, 10.1145/1269899.1254895
Rubinstein, 2008, Compromising PCA-based anomaly detectors for network-wide traffic
Saccenti, 2015, On the use of the observation-wise k-fold operation in PCA cross-validation, J Chemometr, 29, 467, 10.1002/cem.2726
Shyu, 2003
Smilde, 2003, A framework for sequential multiblock component methods, J Chemometr, 17, 323, 10.1002/cem.811
Tracy, 1992, Multivariate control charts for individual observations, J Qual Technol, 24, 88, 10.1080/00224065.1992.12015232
VanMechelen, 2010, A generic linked-mode decomposition model for data fusion, Chemometr Intell Lab Syst, 104, 83, 10.1016/j.chemolab.2010.04.012
Westerhuis, 2000, Generalized contribution plots in multivariate statistical process monitoring, Chemometr Intell Lab Syst, 51, 95, 10.1016/S0169-7439(00)00062-9
Wise, 1990, Theoretical basis for the use of principal component models for monitoring multivariate processes, Process Control Qual, 1, 41
Xie, 2011
Cook