PBAT/TPS Composite Films Reinforced with Starch Nanoparticles Produced by Ultrasound

International Journal of Polymer Science - Tập 2017 - Trang 1-10 - 2017
Normane Mirele Chaves da Silva1, Paulo Romano Cruz Correia2, Janice Izabel Druzian2, Fádi Fakhouri3, Rosana Lopes Fialho1, Elaine C. Cabral1
1Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil
2Department of Bromatological Analysis, College of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
3Faculty of Engineering, Federal University of Grande Dourados, Dourados, MS, Brazil

Tóm tắt

The objective of the present work was to study the incorporation of starch nanoparticles (SNP) produced by ultrasound in blends of poly(butylene adipate-co-terephthalate) (PBAT) and thermoplastic starch (TPS). The films were produced by extrusion using varying percentages of SNP (1, 2, 3, 4, and 5% w/w). The SNP were prepared in water without the addition of any chemical reagent. The results revealed that ultrasound treatment results in the formation of SNP less than 100 nm in size and of an amorphous character and lower thermal stability and low gelatinization temperature when compared with cassava starch. Scanning electron microscopy (SEM) showed that films presented some starch granules. The relative crystallinity (RC) of films decreases with increasing concentration of SNP. The addition of SNP slightly affected the thermal degradation of the films. The DSC results showed that the addition did not modify the interaction between the different components of the films. Mechanical tests revealed an increase in Young’s modulus (36%) and elongation-at-break (35%) with the incorporation of 1% SNP and this concentration reduced the water vapor permeability (53%) and significantly decreased the water absorption of the films, demonstrating that low concentrations of SNP can be used as reinforcement in a polymeric matrix.

Từ khóa


Tài liệu tham khảo

10.1007/s10924-011-0317-1

10.1016/j.carbpol.2012.03.035

10.1016/j.carbpol.2012.02.063

10.1016/j.polymer.2007.11.029

10.1016/j.carbpol.2007.07.001

10.1021/bm050797s

10.4322/polimeros.2013.014

10.1016/j.polymertesting.2016.12.028

10.1016/j.carbpol.2012.06.002

10.1021/bm200581h

10.1016/j.carbpol.2012.04.053

10.1016/j.carbpol.2016.01.061

10.1016/j.foodchem.2017.01.111

10.1016/j.indcrop.2016.04.038

10.1021/bm800987c

10.1016/j.colsurfb.2014.11.011

10.1016/j.carbpol.2012.11.022

10.1016/j.carbpol.2013.05.085

10.1016/j.carbpol.2014.02.067

10.1016/j.lwt.2014.03.015

10.1016/j.reactfunctpolym.2014.09.020

10.1002/pi.5127

2012, BR Patent INPI

10.1002/star.19830351202

10.1016/j.carbpol.2012.12.042

10.1016/j.polymer.2004.07.068

10.1016/j.carbpol.2006.04.012

10.1016/j.matdes.2013.02.010

2003, Revisπo, 26, 726

10.1016/j.nano.2009.04.007

10.1039/c4ra06194b

10.1016/j.jcis.2009.07.035

10.1016/j.carbpol.2014.11.014

10.1080/03602559.2010.496397

10.1016/s0167-7799(97)01021-4

10.1021/bm034089n

10.1002/pen.21136

10.5935/0100-4042.20140170

10.1016/j.polymdegradstab.2012.03.032

10.1016/j.carbpol.2013.04.081

10.1016/j.foodres.2009.05.004

10.1016/j.tifs.2014.12.008

10.1016/j.carbpol.2009.07.051

10.1016/j.foodchem.2006.03.039

10.1007/s12588-009-0013-3

10.1016/j.biortech.2010.05.075

10.1016/j.eurpolymj.2015.05.001

10.1111/ijfs.12148

10.1016/j.foodhyd.2013.08.009

10.1016/j.carbpol.2012.07.015

10.1016/j.lwt.2016.01.053