PARIS: Partial instance and training set selection. A new scalable approach to multi-label classification

Information Fusion - Tập 95 - Trang 120-142 - 2023
Nicolás García-Pedrajas1, José M. Cuevas-Muñoz1, Juan A. Romero del Castillo1, Aida de Haro-García1
1University of Córdoba, Campus de Rabanales, 14071, Córdoba, Spain

Tài liệu tham khảo

Zhang, 2014, A review on multi-label learning algorithms, IEEE Trans. Knowl. Data Eng., 26, 1819, 10.1109/TKDE.2013.39 Read, 2015, Scalable multi-output label prediction: From classifier chains to classifier trellises, Pattern Recognit., 48, 2096, 10.1016/j.patcog.2015.01.004 Zhang, 2007, Ml-knn: A lazy learning approach to multi-label learning, Pattern Recognit., 40, 2038, 10.1016/j.patcog.2006.12.019 Z. Younes, F. Abdallah, T. Denoeux, Multi-label classification algorithm derived from k-nearest neighbor rule with label dependencies, in: 16th European Signal Processing Conference, 2008, pp. 1–5. Pakrashi, 2017, Stacked-mlknn: A stacking based improvement to multi-label k-nearest neighbours, Proc. Mach. Learn. Res., 74, 51 Cheng, 2009, Combining instance-based learning and logistic regression for multilabel classification, Mach. Learn., 76, 211, 10.1007/s10994-009-5127-5 Lin, 2010, Mr.knn: Soft relevance for multi-label classification, 349 Brighton, 2002, Advances in instance selection for instance-based learning algorithms, Data Min. Knowl. Discov., 6, 153, 10.1023/A:1014043630878 García-Pedrajas, 2014, A scalable memetic algorithm for simultaneous instance and feature selection, Evolut. Comput., 22, 1, 10.1162/EVCO_a_00102 García-Pedrajas, 2011, Evolutionary computation for training set selection, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 1, 512, 10.1002/widm.44 García-Pedrajas, 2021, Cooperative coevolutionary instance selection for multilabel problems, Knowl.-Based Syst., 234, 10756, 10.1016/j.knosys.2021.107569 Chawla, 2002, SMOTE: Synthetic minority over-sampling technique, J. Artificial Intelligence Res., 16, 321, 10.1613/jair.953 Charte, 2015, Addressing imbalance in multilabel classification: Measures and random resampling algorithms, Neurocomputing, 163, 3, 10.1016/j.neucom.2014.08.091 Arnaiz-González, 2018, Local sets for multi-label instance selection, Appl. Soft Comput., 68, 651, 10.1016/j.asoc.2018.04.016 Kordos, 2019, Evolutionary prototype selection for multi-output regression, Neurocomputing, 358, 309, 10.1016/j.neucom.2019.05.055 del Castillo, 2021, Instance selection for multi-label learning based on a scalable evolutionary algorithm, 843 Ma, 2022, Topic-based instance and feature selection in multilabel classification, IEEE Trans. Neural Netw. Learn. Syst., 33, 315, 10.1109/TNNLS.2020.3027745 Mansouri, 2021, Towards multi-label feature selection by instance and label selections, 233 Valero-Mas, 2023, Multilabel prototype generation for data reduction in k-nearest neighbour classification, Pattern Recognit., 135, 10.1016/j.patcog.2022.109190 Pérez-Rodríguez, 2015, Simultaneous instance and feature selection and weighting using evolutionary computation: Proposal and study, Appl. Soft Comput., 37, 416, 10.1016/j.asoc.2015.07.046 Eshelman, 1990 Louis, 1997, Combining robot control strategies using genetic algorithms with memory, vol.1213, 431 García-Osorio, 2010, Democratic instance selection: A linear complexity instance selection algorithm based on classifier ensemble concepts, Artificial Intelligence, 174, 410, 10.1016/j.artint.2010.01.001 de Haro-García, 2009, A divide-and-conquer recursive approach for scaling up instance selection algorithms, Data Min. Knowl. Discov., 18, 392, 10.1007/s10618-008-0121-2 García-Pedrajas, 2013, A scalable approach to simultaneous evolutionary instance and feature selection, Inform. Sci., 228, 150, 10.1016/j.ins.2012.10.006 K. Sechidis, G. Tsoumakas, I. Vlahavas, On the stratification of multi-label data, in: Proceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases, Part III, 2011, pp. 145–158. P. Szymański, T. Kajdanowicz, A network perspective on stratification of multi-label data, in: First International Workshop on Learning with Imbalanced Domains: Theory and Applications, 2017, pp. 22–35. de Haro-García, 2018, Combining three strategies for evolutionary instance selection for instance-based learning, Swarm Evol. Comput., 42, 160, 10.1016/j.swevo.2018.02.022 Demšar, 2006, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7, 1 Wilcoxon, 1945, Individual comparisons by ranking methods, Biometrics, 1, 80, 10.2307/3001968 Nemenyi, 1963 Boutell, 2004, Learning multi-label scene classification, Pattern Recognit., 37, 1757, 10.1016/j.patcog.2004.03.009 Sorower, 2010, A literature survey on algorithms for multi-label learning Schapire, 2000, Boostexter: A boosting-based system for text categorization, Mach. Learn., 39, 135, 10.1023/A:1007649029923 Godbole, 2004, Discriminative methods for multi-labeled classification, 22 Tsoumakas, 2011, Random k-labelsets for multi-label classification, IEEE Trans. Knowl. Data Eng., 23, 1079, 10.1109/TKDE.2010.164 Read, 2011, Classifier chains for multi-label classification, Mach. Learn., 85, 333, 10.1007/s10994-011-5256-5 Benites, 2015, Haram: A hierarchical aram neural network for large-scale text classification, 847 Szymański, 2017 Kanj, 2016, Editing training data for multi-label classification with the k-nearest neighbor rule, Pattern Anal. Appl., 19, 145, 10.1007/s10044-015-0452-8 Charte, 2014, Mlenn: A first approach to heuristic multilabel undersampling, 1 Fürnkranz, 2008, Multilabel classification via calibrated label ranking, Mach. Learn., 73, 133, 10.1007/s10994-008-5064-8