PAPERCLIP Identifies MicroRNA Targets and a Role of CstF64/64tau in Promoting Non-canonical poly(A) Site Usage

Cell Reports - Tập 15 - Trang 423-435 - 2016
Hun-Way Hwang1, Christopher Y. Park1,2, Hani Goodarzi3, John J. Fak1, Aldo Mele1, Michael J. Moore1, Yuhki Saito1, Robert B. Darnell1,2
1Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
2New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
3Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA

Tài liệu tham khảo

Bruno, 2011, Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay, Mol. Cell, 42, 500, 10.1016/j.molcel.2011.04.018 Chi, 2009, Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps, Nature, 460, 479, 10.1038/nature08170 Darnell, 2013, RNA protein interaction in neurons, Annu. Rev. Neurosci., 36, 243, 10.1146/annurev-neuro-062912-114322 Derti, 2012, A quantitative atlas of polyadenylation in five mammals, Genome Res., 22, 1173, 10.1101/gr.132563.111 Di Giammartino, 2011, Mechanisms and consequences of alternative polyadenylation, Mol. Cell, 43, 853, 10.1016/j.molcel.2011.08.017 Elkon, 2013, Alternative cleavage and polyadenylation: extent, regulation and function, Nat. Rev. Genet., 14, 496, 10.1038/nrg3482 2012, An integrated encyclopedia of DNA elements in the human genome, Nature, 489, 57, 10.1038/nature11247 Grimson, 2007, MicroRNA targeting specificity in mammals: determinants beyond seed pairing, Mol. Cell, 27, 91, 10.1016/j.molcel.2007.06.017 Hilgers, 2011, Neural-specific elongation of 3′ UTRs during Drosophila development, Proc. Natl. Acad. Sci. USA, 108, 15864, 10.1073/pnas.1112672108 Hoque, 2013, Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing, Nat. Methods, 10, 133, 10.1038/nmeth.2288 Jaffe, 2015, Developmental regulation of human cortex transcription and its clinical relevance at single base resolution, Nat. Neurosci., 18, 154, 10.1038/nn.3898 Jenal, 2012, The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites, Cell, 149, 538, 10.1016/j.cell.2012.03.022 Ji, 2009, Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development, Proc. Natl. Acad. Sci. USA, 106, 7028, 10.1073/pnas.0900028106 Kahvejian, 2001, The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation, Cold Spring Harb. Symp. Quant. Biol., 66, 293, 10.1101/sqb.2001.66.293 Lianoglou, 2013, Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression, Genes Dev., 27, 2380, 10.1101/gad.229328.113 Licatalosi, 2010, RNA processing and its regulation: global insights into biological networks, Nat. Rev. Genet., 11, 75, 10.1038/nrg2673 Licatalosi, 2008, HITS-CLIP yields genome-wide insights into brain alternative RNA processing, Nature, 456, 464, 10.1038/nature07488 Martin, 2012, Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length, Cell Rep., 1, 753, 10.1016/j.celrep.2012.05.003 Masamha, 2014, CFIm25 links alternative polyadenylation to glioblastoma tumour suppression, Nature, 510, 412, 10.1038/nature13261 Meza-Sosa, 2014, microRNAs: key triggers of neuronal cell fate, Front. Cell. Neurosci., 8, 175, 10.3389/fncel.2014.00175 Miura, 2013, Widespread and extensive lengthening of 3′ UTRs in the mammalian brain, Genome Res., 23, 812, 10.1101/gr.146886.112 Miura, 2014, Alternative polyadenylation in the nervous system: to what lengths will 3′ UTR extensions take us?, BioEssays, 36, 766, 10.1002/bies.201300174 Moore, 2014, Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis, Nat. Protoc., 9, 263, 10.1038/nprot.2014.012 Nam, 2002, Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription, Proc. Natl. Acad. Sci. USA, 99, 6152, 10.1073/pnas.092140899 Nam, 2014, Global analyses of the effect of different cellular contexts on microRNA targeting, Mol. Cell, 53, 1031, 10.1016/j.molcel.2014.02.013 Nunes, 2010, A functional human Poly(A) site requires only a potent DSE and an A-rich upstream sequence, EMBO J., 29, 1523, 10.1038/emboj.2010.42 Okaty, 2011, A quantitative comparison of cell-type-specific microarray gene expression profiling methods in the mouse brain, PLoS ONE, 6, e16493, 10.1371/journal.pone.0016493 Ozsolak, 2010, Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation, Cell, 143, 1018, 10.1016/j.cell.2010.11.020 Robinson, 2010, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 26, 139, 10.1093/bioinformatics/btp616 Schultz, 2005, Modification of human hearing loss by plasma-membrane calcium pump PMCA2, N. Engl. J. Med., 352, 1557, 10.1056/NEJMoa043899 Shepard, 2011, Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq, RNA, 17, 761, 10.1261/rna.2581711 Shi, 2012, Alternative polyadenylation: new insights from global analyses, RNA, 18, 2105, 10.1261/rna.035899.112 Shi, 2009, Molecular architecture of the human pre-mRNA 3′ processing complex, Mol. Cell, 33, 365, 10.1016/j.molcel.2008.12.028 Smibert, 2012, Global patterns of tissue-specific alternative polyadenylation in Drosophila, Cell Rep., 1, 277, 10.1016/j.celrep.2012.01.001 Smrt, 2010, MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1, Stem Cells, 28, 1060, 10.1002/stem.431 Strehler, 2001, Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps, Physiol. Rev., 81, 21, 10.1152/physrev.2001.81.1.21 Takagaki, 1997, RNA recognition by the human polyadenylation factor CstF, Mol. Cell. Biol., 17, 3907, 10.1128/MCB.17.7.3907 Tan, 2013, MicroRNA-128 governs neuronal excitability and motor behavior in mice, Science, 342, 1254, 10.1126/science.1244193 Tian, 2013, Alternative cleavage and polyadenylation: the long and short of it, Trends Biochem. Sci., 38, 312, 10.1016/j.tibs.2013.03.005 Ulitsky, 2012, Extensive alternative polyadenylation during zebrafish development, Genome Res., 22, 2054, 10.1101/gr.139733.112 Utomo, 1999, Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice, Nat. Biotechnol., 17, 1091, 10.1038/15073 Venkataraman, 2005, Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition, Genes Dev., 19, 1315, 10.1101/gad.1298605 Wang, 2013, Genome-wide maps of polyadenylation reveal dynamic mRNA 3′-end formation in mammalian cell lineages, RNA, 19, 413, 10.1261/rna.035360.112 Weyn-Vanhentenryck, 2014, HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism, Cell Rep., 6, 1139, 10.1016/j.celrep.2014.02.005 Yao, 2012, Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation, Proc. Natl. Acad. Sci. USA, 109, 18773, 10.1073/pnas.1211101109 Yao, 2013, Overlapping and distinct functions of CstF64 and CstF64τ in mammalian mRNA 3′ processing, RNA, 19, 1781, 10.1261/rna.042317.113 Zhang, 2014, An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex, J. Neurosci., 34, 11929, 10.1523/JNEUROSCI.1860-14.2014