PAM-Expanded Streptococcus thermophilus Cas9 C-to-T and C-to-G Base Editors for Programmable Base Editing in Mycobacteria

Engineering - Tập 15 - Trang 67-77 - 2022
Hongyuan Zhang1,2, Yifei Zhang1,2, Wei-Xiao Wang3, Weizhong Chen1, Xia Zhang4, Xingxu Huang5,6, Wei Chen3, Quanjiang Ji1,5,6
1School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
2University of Chinese Academy of Sciences, Beijing, 100049, China
3Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
4Department of Tuberculosis, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
5Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
6Guangzhou Laboratory, Guangzhou 510120, China

Tài liệu tham khảo

World Health Organization. Global tuberculosis report 2018. Report. 2018. Gandhi, 2010, Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis, Lancet, 375, 1830, 10.1016/S0140-6736(10)60410-2 Udwadia, 2012, Totally drug-resistant tuberculosis in India, Clin Infect Dis, 54, 579, 10.1093/cid/cir889 Balasubramanian, 1996, Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates, J Bacteriol, 178, 273, 10.1128/jb.178.1.273-279.1996 Bardarov, 2002, Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis, Microbiology, 148, 3007, 10.1099/00221287-148-10-3007 van Kessel, 2007, Recombineering in Mycobacterium tuberculosis, Nat Methods, 4, 147, 10.1038/nmeth996 Murphy, 2018, ORBIT: a new paradigm for genetic engineering of mycobacterial chromosomes, MBio, 9, e01467, 10.1128/mBio.01467-18 Yan, 2020, A CRISPR-assisted nonhomologous end-joining strategy for efficient genome editing in Mycobacterium tuberculosis, MBio, 11, e02364, 10.1128/mBio.02364-19 Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829 Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143 Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033 Ge, 2016, CRISPR/Cas9-AAV mediated knock-in at NRL locus in human embryonic stem cells, Mol Ther Nucleic Acids, 5, 10.1038/mtna.2016.100 Cobb, 2015, High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system, ACS Synth Biol, 4, 723, 10.1021/sb500351f Yang, 2017, CRISPR/Cas9-loxP-mediated gene editing as a novel site-specific genetic manipulation tool, Mol Ther Nucleic Acids, 7, 378, 10.1016/j.omtn.2017.04.018 Tong, 2015, CRISPR-Cas9 based engineering of actinomycetal genomes, ACS Synth Biol, 4, 1020, 10.1021/acssynbio.5b00038 Jiang, 2013, RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nat Biotechnol, 31, 233, 10.1038/nbt.2508 Chen, 2017, Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system, J Am Chem Soc, 139, 3790, 10.1021/jacs.6b13317 Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022 Gilbert, 2013, CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, 154, 442, 10.1016/j.cell.2013.06.044 Choudhary, 2015, Gene silencing by CRISPR interference in mycobacteria, Nat Commun, 6, 6267, 10.1038/ncomms7267 Singh, 2016, Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system, Nucleic Acids Res, 44, 10.1093/nar/gkw625 Rock, 2017, Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform, Nat Microbiol, 2, 16274, 10.1038/nmicrobiol.2016.274 Fleck, 2021, A Cas12a-based CRISPR interference system for multigene regulation in mycobacteria, J Biol Chem, 297, 10.1016/j.jbc.2021.100990 Komor, 2016, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, 420, 10.1038/nature17946 Gaudelli, 2017, Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage, Nature, 551, 464, 10.1038/nature24644 Jin, 2019, Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice, Science, 364, 292, 10.1126/science.aaw7166 Tong, 2019, Highly efficient DSB-free base editing for Streptomycetes with CRISPR-BEST, Proc Natl Acad Sci USA, 116, 20366, 10.1073/pnas.1913493116 Gu, 2018, Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase, Chem Sci, 9, 3248, 10.1039/C8SC00637G Wang, 2019, A highly efficient CRISPR-Cas9-based genome engineering platform in Acinetobacter baumannii to understand the H2O2-sensing mechanism of OxyR, Cell Chem Biol, 26, 1732, 10.1016/j.chembiol.2019.09.003 Zheng, 2018, Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion, Commun Biol, 1, 32, 10.1038/s42003-018-0035-5 Li, 2019, CRISPR-Cas9D10A nickase-assisted base editing in the solvent producer Clostridium beijerinckii, Biotechnol Bioeng, 116, 1475, 10.1002/bit.26949 Chen, 2018, CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species, iScience, 6, 222, 10.1016/j.isci.2018.07.024 Wang, 2018, CRISPR-Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae, Appl Environ Microbiol, 84, e01834, 10.1128/AEM.01834-18 Banno, 2018, Deaminase-mediated multiplex genome editing in Escherichia coli, Nat Microbiol, 3, 423, 10.1038/s41564-017-0102-6 Wang, 2018, MACBETH: multiplex automated Corynebacterium glutamicum base editing method, Metab Eng, 47, 200, 10.1016/j.ymben.2018.02.016 Gibson, 2009, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat Methods, 6, 343, 10.1038/nmeth.1318 Kluesner, 2018, EditR: a method to quantify base editing from sanger sequencing, CRISPR J, 1, 239, 10.1089/crispr.2018.0014 Altenbuchner, 2016, Editing of the bacillus subtilis genome by the CRISPR-Cas9 system, Appl Environ Microbiol, 82, 5421, 10.1128/AEM.01453-16 Huang, 2016, CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium, ACS Synth Biol, 5, 1355, 10.1021/acssynbio.6b00044 Leenay, 2019, Genome editing with CRISPR-Cas9 in Lactobacillus plantarum revealed that editing outcomes can vary across strains and between methods, Biotechnol J, 14, 10.1002/biot.201700583 Jiang, 2015, Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system, Appl Environ Microbiol, 81, 2506, 10.1128/AEM.04023-14 Li, 2018, Base editing with a Cpf1-cytidine deaminase fusion, Nat Biotechnol, 36, 324, 10.1038/nbt.4102 Zhang, 2020, Catalytic-state structure and engineering of Streptococcus thermophilus Cas9, Nat Catal, 3, 813, 10.1038/s41929-020-00506-9 Komor, 2017, Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: a base editors with higher efficiency and product purity, Sci Adv, 3, 10.1126/sciadv.aao4774 Zhao, 2021, Glycosylase base editors enable C-to-A and C-to-G base changes, Nat Biotechnol, 39, 35, 10.1038/s41587-020-0592-2 Kurt, 2021, CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells, Nat Biotechnol, 39, 41, 10.1038/s41587-020-0609-x Chen, 2021, Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins, Nat Commun, 12, 1384, 10.1038/s41467-021-21559-9 Koblan, 2021, Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning, Nat Biotechnol, 39, 1414, 10.1038/s41587-021-00938-z Billon, 2017, CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons, Mol Cell, 67, 1068, 10.1016/j.molcel.2017.08.008 Yu, 2020, CRISPR-CBEI: a designing and analyzing tool kit for cytosine base editor-mediated gene inactivation, mSystems, 5, e00350, 10.1128/mSystems.00350-20 Gupta, 2017, A novel calcium uptake transporter of uncharacterized P-type ATPase family supplies calcium for cell surface integrity in Mycobacterium smegmatis, MBio, 8, e01388, 10.1128/mBio.01388-17 Unissa, 2016, Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis, Infect Genet Evol, 45, 474, 10.1016/j.meegid.2016.09.004