P2Y12 receptor upregulation in satellite glial cells is involved in neuropathic pain induced by HIV glycoprotein 120 and 2′,3′-dideoxycytidine
Tóm tắt
The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2′,3′-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca2+]i activated by the P2Y12 receptor agonist 2-(Methylthio) adenosine 5′-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca2+]i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.
Tài liệu tham khảo
Hao S (2013) The molecular and pharmacological mechanisms of HIV-related neuropathic pain. Curr Neuropharmacol 11(5):499–512. https://doi.org/10.2174/1570159x11311050005
Parker R, Stein DJ, Jelsma J (2014) Pain in people living with HIV/AIDS: a systematic review. J Int AIDS Soc 17:18719. https://doi.org/10.7448/ias.17.1.18719
Schutz SG, Robinson-Papp J (2013) HIV-related neuropathy: current perspectives. HIV AIDS (Auckl) 5:243–251. https://doi.org/10.2147/hiv.s36674
Evans SR, Ellis RJ, Chen H, Yeh TM, Lee AJ, Schifitto G, Wu K, Bosch RJ, McArthur JC, Simpson DM, Clifford DB (2011) Peripheral neuropathy in HIV: prevalence and risk factors. Aids 25(7):919–928. https://doi.org/10.1097/QAD.0b013e328345889d
Herzberg U, Sagen J (2001) Peripheral nerve exposure to HIV viral envelope protein gp120 induces neuropathic pain and spinal gliosis. J Neuroimmunol 116(1):29–39
Wallace VC, Blackbeard J, Pheby T, Segerdahl AR, Davies M, Hasnie F, Hall S, McMahon SB, Rice AS (2007) Pharmacological, behavioural and mechanistic analysis of HIV-1 gp120 induced painful neuropathy. Pain 133(1–3):47–63. https://doi.org/10.1016/j.pain.2007.02.015
Oshinaike O, Akinbami A, Ojo O, Ogbera A, Okubadejo N, Ojini F, Danesi M (2012) Influence of age and neurotoxic HAART use on frequency of HIV sensory neuropathy. AIDS Res Treat 2012:961510. https://doi.org/10.1155/2012/961510
Joseph EK, Chen X, Khasar SG, Levine JD (2004) Novel mechanism of enhanced nociception in a model of AIDS therapy-induced painful peripheral neuropathy in the rat. Pain 107(1–2):147–158
Keswani SC, Jack C, Zhou C, Hoke A (2006) Establishment of a rodent model of HIV-associated sensory neuropathy. J Neurosci 26(40):10299–10304. https://doi.org/10.1523/jneurosci.3135-06.2006
Wallace VC, Blackbeard J, Segerdahl AR, Hasnie F, Pheby T, McMahon SB, Rice AS (2007) Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain. Brain 130(Pt 10):2688–2702. https://doi.org/10.1093/brain/awm195
Takeda M, Takahashi M, Matsumoto S (2009) Contribution of the activation of satellite glia in sensory ganglia to pathological pain. Neurosci Biobehav Rev 33(6):784–792. https://doi.org/10.1016/j.neubiorev.2008.12.005
Costa FA, Moreira Neto FL (2015) Satellite glial cells in sensory ganglia: its role in pain. Rev Bras Anestesiol 65(1):73–81. https://doi.org/10.1016/j.bjan.2013.07.013
Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48(3):457–476. https://doi.org/10.1016/j.brainresrev.2004.09.001
Blum E, Procacci P, Conte V, Sartori P, Hanani M (2017) Long term effects of lipopolysaccharide on satellite glial cells in mouse dorsal root ganglia. Exp Cell Res 350(1):236–241. https://doi.org/10.1016/j.yexcr.2016.11.026
Takeda M, Tanimoto T, Kadoi J, Nasu M, Takahashi M, Kitagawa J, Matsumoto S (2007) Enhanced excitability of nociceptive trigeminal ganglion neurons by satellite glial cytokine following peripheral inflammation. Pain 129(1–2):155–166. https://doi.org/10.1016/j.pain.2006.10.007
Fields R, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 276(6):423–436
Verderio C, Matteoli M (2011) ATP in neuron-glia bidirectional signalling. Brain Res Rev 66(1–2):106–114. https://doi.org/10.1016/j.brainresrev.2010.04.007
Zhang X, Chen Y, Wang C, Huang LY (2007) Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci USA 104(23):9864–9869. https://doi.org/10.1073/pnas.0611048104
Katagiri A, Shinoda M, Honda K, Toyofuku A, Sessle BJ, Iwata K (2012) Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats. Mol Pain 8:23. https://doi.org/10.1186/1744–8069–8-23
Kobayashi K, Yamanaka H, Noguchi K (2013) Expression of ATP receptors in the rat dorsal root ganglion and spinal cord. Anat Sci Int 88(1):10–16. https://doi.org/10.1007/s12565-012-0163-9
Yi Z, Rao S, Ouyang S, Bai Y, Yang J, Ma Y, Han X, Wu B, Zou L, Jia T, Zhao S, Hu X, Lei Q, Gao Y, Liu S, Xu H, Zhang C, Liang S, Li G (2017) A317491 relieved HIV gp120-associated neuropathic pain involved in P2X3 receptor in dorsal root ganglia. Brain Res Bull 130:81–89. https://doi.org/10.1016/j.brainresbull.2017.01.002
Nasirinezhad F, Jergova S, Pearson JP, Sagen J (2015) Attenuation of persistent pain-related behavior by fatty acid amide hydrolase (FAAH) inhibitors in a rat model of HIV sensory neuropathy. Neuropharmacology 95:100–109. https://doi.org/10.1016/j.neuropharm.2014.11.024
Lin J, Li G, Den X, Xu C, Liu S, Gao Y, Liu H, Zhang J, Li X, Liang S (2010) VEGF and its receptor-2 involved in neuropathic pain transmission mediated by P2X(2)(/)(3) receptor of primary sensory neurons. Brain Res Bull 83(5):284–291. https://doi.org/10.1016/j.brainresbull.2010.08.002
Zhang Z, Liu X, Lu S, Yu A, Fu Z (2013) Increased pain in response to mechanical or thermal stimulation in a rat model of incision-induced pain with nicotine dependence and withdrawal. Exp Ther Med 5(4):1063–1066. https://doi.org/10.3892/etm.2013.963
Tu G, Li G, Peng H, Hu J, Liu J, Kong F, Liu S, Gao Y, Xu C, Xu X, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Wu B, Peng L, Song M, Wu Q, Liang S (2013) P2X(7) inhibition in stellate ganglia prevents the increased sympathoexcitatory reflex via sensory-sympathetic coupling induced by myocardial ischemic injury. Brain Res Bull 96:71–85. https://doi.org/10.1016/j.brainresbull.2013.05.004
Feldman-Goriachnik R, Hanani M (2017) The effects of endothelin-1 on satellite glial cells in peripheral ganglia. Neuropeptides. https://doi.org/10.1016/j.npep.2017.03.002
Castillo C, Norcini M, Martin Hernandez LA, Correa G, Blanck TJ, Recio-Pinto E (2013) Satellite glia cells in dorsal root ganglia express functional NMDA receptors. Neuroscience 240:135–146. https://doi.org/10.1016/j.neuroscience.2013.02.031
Liu S, Zhang C, Shi Q, Li G, Song M, Gao Y, Xu C, Xu H, Fan B, Yu S, Zheng C, Zhu Q, Wu B, Peng L, Xiong H, Wu Q, Liang S (2014) Puerarin blocks the signaling transmission mediated by P2X3 in SG and DRG to relieve myocardial ischemic damage. Brain Res Bull 101:57–63. https://doi.org/10.1016/j.brainresbull.2014.01.001
Burnstock G (2013) Purinergic mechanisms and pain––an update. Eur J Pharmacol 716(1–3):24–40. https://doi.org/10.1016/j.ejphar.2013.01.078
Ying M, Liu H, Zhang T, Jiang C, Gong Y, Wu B, Zou L, Yi Z, Rao S, Li G, Zhang C, Jia T, Zhao S, Yuan H, Shi L, Li L, Liang S, Liu S (2017) Effect of artemisinin on neuropathic pain mediated by P2X4 receptor in dorsal root ganglia. Neurochem Int. https://doi.org/10.1016/j.neuint.2017.02.004
Yuan S, Shi Y, Chen J, Zhou X, Li G, Gelman BB, Lisinicchia JG, Carlton SM, Ferguson MR, Tan A (2014) Gp120 in the pathogenesis of human HIV-associated pain. Ann Neurol 75(6):837–850
Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ, Hao S (2011) Glial TNFα in the spinal cord regulates neuropathic pain induced by HIV gp120 application in rats. Mol Pain 7:40. https://doi.org/10.1186/1744–8069–7-40
Yano R, Ma L, Nagai J, Ueda H (2013) Interleukin-1β plays key roles in LPA-induced amplification of LPA production in neuropathic pain model. Cell Mol Neurobiol 33(8):1033–1041. https://doi.org/10.1007/s10571-013-9970-3
Sommer C, Lindenlaub T, Teuteberg P, Schafers M, Hartung T, Toyka KV (2001) Anti-TNF-neutralizing antibodies reduce pain-related behavior in two different mouse models of painful mononeuropathy. Brain Res 913(1):86–89
Franke H, Verkhratsky A, Burnstock G, Illes P (2012) Pathophysiology of astroglial purinergic signalling. Purinergic Signal 8(3):629–657. https://doi.org/10.1007/s11302-012-9300-0
Horvath G, Goloncser F, Csolle C, Kiraly K, Ando RD, Baranyi M, Kovanyi B, Mate Z, Hoffmann K, Algaier I, Baqi Y, Muller CE, Von Kugelgen I, Sperlagh B (2014) Central P2Y12 receptor blockade alleviates inflammatory and neuropathic pain and cytokine production in rodents. Neurobiol Dis 70:162–178. https://doi.org/10.1016/j.nbd.2014.06.011
Taves S, Berta T, Liu DL, Gan S, Chen G, Kim YH, Van de Ven T, Laufer S, Ji RR (2016) Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: sex-dependent microglial signaling in the spinal cord. Brain Behav Immun 55:70–81. https://doi.org/10.1016/j.bbi.2015.10.006
Tatsumi E, Yamanaka H, Kobayashi K, Yagi H, Sakagami M, Noguchi K (2015) RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain. Glia 63(2):216–228. https://doi.org/10.1002/glia.22745
Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K (2008) P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J Neurosci 28(11):2892–2902. https://doi.org/10.1523/jneurosci.5589-07.2008
Pinheiro AR, Paramos-de-Carvalho D, Certal M, Costa C, Magalhaes-Cardoso MT, Ferreirinha F, Costa MA, Correia-de-Sa P (2013) Bradykinin-induced Ca2+ signaling in human subcutaneous fibroblasts involves ATP release via hemichannels leading to P2Y12 receptors activation. Cell Commun Signal 11:70. https://doi.org/10.1186/1478-811x-11-70
Sachs D, Cunha FQ, Poole S, Ferreira SH (2002) Tumour necrosis factor-alpha, interleukin-1beta and interleukin-8 induce persistent mechanical nociceptor hypersensitivity. Pain 96(1–2):89–97
Pollock J, McFarlane SM, Connell MC, Zehavi U, Vandenabeele P, MacEwan DJ, Scott RH (2002) TNF-α receptors simultaneously activate Ca2+ mobilisation and stress kinases in cultured sensory neurones. Neuropharmacology 42(1):93–106
Schafers M, Lee DH, Brors D, Yaksh TL, Sorkin LS (2003) Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci 23(7):3028–3038
Suadicani SO, Cherkas PS, Zuckerman J, Smith DN, Spray DC, Hanani M (2010) Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. Neuron Glia Biol 6(1):43–51. https://doi.org/10.1017/s1740925x09990408
Magni G, Ceruti S (2013) P2Y purinergic receptors: new targets for analgesic and antimigraine drugs. Biochem Pharmacol 85(4):466–477. https://doi.org/10.1016/j.bcp.2012.10.027
Ceruti S, Fumagalli M, Villa G, Verderio C, Abbracchio MP (2008) Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures. Cell Calcium 43(6):576–590. https://doi.org/10.1016/j.ceca.2007.10.003