P‐type doping and devices based on ZnO

Physica Status Solidi (B): Basic Research - Tập 241 Số 3 - Trang 624-630 - 2004
D. C. Look1,2, B. Claflin1,2
1Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, 45433, USA
2Semiconductor Research Center, Wright State University, Dayton, OH 45435 USA

Tóm tắt

AbstractBoth n‐type and p‐type ZnO will be required for development of homojunction light‐emitting diodes (LEDs) and laser diodes (LDs). It is easy to obtain strong n‐type ZnO, but very difficult to create consistent, reliable, high‐conductivity p‐type material. The most natural choice of an acceptor dopant is N, substituting for O, and indeed several groups have been able to obtain p‐type material by such doping. Surprisingly, however, other groups have also been successful with P and As, elements with much larger ionic radii than that of O. Although ZnO substrates are now available, most of the epitaxial p‐type layers so far have been grown on sapphire, or other poorly‐matched materials. The lowest p‐type resistivity obtained up to now is about 0.5 Ω‐cm, which should be sufficient for LED fabrication. In spite of the present availability of p‐type ZnO, very few homojunction LEDs have been reported so far, to our knowledge; however, several good heterojunction LEDs have been demonstrated, fabricated with p‐type layers composed of other materials. One such structure, with fairly strong 389‐nm emission at 300 K, involves n‐type ZnO and p‐type AlGaN, grown on an SiC substrate. Also, an N+‐ion implanted ZnO layer, deposited by chemical vapor deposition on Al2O3, exhibits 388‐nm emission at 300 K and could be economical to produce. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Từ khóa


Tài liệu tham khảo

10.1016/S0921-5107(00)00604-8

10.1143/JJAP.36.L1453

10.1143/JJAP.38.L1205

10.1016/S0022-0248(00)00437-1

10.1016/S0921-4526(01)00419-7

10.1016/S0022-0248(00)00952-0

10.1088/0268-1242/16/7/308

10.1143/JJAP.41.L1281

10.1063/1.1449528

10.1016/S0925-3467(01)00224-5

10.1063/1.1504875

10.1116/1.1584036

10.1016/S0169-4332(03)00151-X

10.1557/JMR.2003.0003

10.1063/1.1527210

10.1023/A:1022347910122

10.1149/1.1554292

10.1063/1.1590423

10.1063/1.1591064

10.1016/S0167-577X(03)00054-5

10.1016/S0022-0248(03)01241-7

10.1143/JJAP.38.L166

10.1103/PhysRevB.63.075205

Lee E.‐C., 2001, J. Korean Phys. Soc., 39, S23

10.1016/S0040-6090(02)00655-7

10.1103/PhysRevB.66.073202

10.1103/PhysRevLett.90.256401

10.1063/1.126599

10.1143/JJAP.40.L177

10.1063/1.1367315

10.1016/S0040-6090(02)00742-3

10.1116/1.1524152

10.1016/S0022-0248(01)01951-0

10.1063/1.1544436

10.1016/S0022-0248(03)01205-3

10.1063/1.1579553

10.1063/1.1625787

10.1063/1.1615308

10.1063/1.1632537

Ya. I.Alivov D. C.Look M. V.Chukichev B. M.Ataev V. A.Nikitenko V. I.Zinenko andYu. A.Agafonov unpublished.

Y. R.Ryu private communication.

10.1016/S0038-1098(97)10145-4

10.1103/PhysRevB.57.12151

10.1016/S0921-4526(01)00877-8

10.1002/pssa.200306274

10.1063/1.1606859

10.1103/PhysRevLett.85.1012

10.1063/1.1595147

10.1016/S0921-4526(01)00850-X

10.1063/1.1450041

10.1063/1.1592621

10.1063/1.1424066

Zuener A., 2002, phys. stat. sol. (b), 234, R7, 10.1002/1521-3951(200212)234:3<R7::AID-PSSB99997>3.0.CO;2-D