P systems attacking hard problems beyond NP: a survey

Petr Sosík1
1Research Institute of the IT4Innovations Centre of Excellence, Faculty of Philosophy and Science, Silesian University in Opava, Opava, Czech Republic

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alhazov, A., Freund, R., Oswald, M. (2005). Tissue P systems with antiport rules and small numbers of symbols and cells. In: C. De Felice, A. Restivo (Eds.) Developments in Language Theory, DLT 2005, Lecture Notes in Computer Science (vol. 3572, pp. 54–78). Berlin: Springer

Alhazov, A., Leporati, A., Mauri, G., Porreca, A. E., & Zandron, C. (2014). Space complexity equivalence of P systems with active membranes and turing machines. Theoretical Computer Science, 529, 69–81.

Alhazov, A., Martín-Vide, C., & Pan, L. (2003). Solving a PSPACE-complete problem by P systems with restricted active membranes. Fundamenta Informaticae, 58(2), 67–77.

Alhazov, A., & Pérez-Jiménez, M. (2007). Uniform solution of QSAT using polarizationless active membranes. In: J. Durand-Lose, M. Margenstern (Eds.) Machines, Computations, and Universality, 5th International Conference, MCU 2007, Lecture Notes in Computer Science (vol. 4664, pp. 122–133). Springer.

Bernardini, F., & Gheorghe, M. (2005). Cell communication in tissue P systems and cell division in population P systems. Soft Computing, 9(9), 640–649.

Cavaliere, M. (2013). Time-free solutions to hard computational problems. In: M. Gheorghe, G. Păun, M.J. Pérez-Jiménez, G. Rozenberg (Eds.) Research Frontiers of Membrane Computing: Open Problems and Research Topics, International Journal of Foundations of Computer Science (vol. 24 (5), pp. 579–582). World Scientific (2013). Section 11

Cavaliere, M., & Sburlan, D. (2005). Time-independent P systems. In: G. Mauri, G. Paun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa (Eds.) Membrane Computing, 5th International Workshop, WMC 2004, Lecture Notes in Computer Science (vol. 3365, pp. 239–258). Springer

Chandra, A.K., & Stockmeyer, L.J. (1976). Alternation. In: 17th Annual Symposium on Foundations of Computer Science, Houston, Texas, USA, 25–27 October 1976, pp. 98–108. IEEE Computer Society. https://doi.org/10.1109/SFCS.1976.4

Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., & Vaszil, G. (Eds.). (2013). Membrane Computing—13th International Conference, CMC13, Lecture Notes in Computer Science (vol. 7762). Springer

Díaz-Pernil, D., Pérez-Jiménez, M. J., & Romero-Jiménez, Á. (2009). Efficient simulation of tissue-like P systems by transition cell-like P systems. Natural Computing, 8(4), 797–806.

Eleftherakis, G., Kefalas, P., Paun, G., Rozenberg, G., & Salomaa, A. (eds.) (2007). Membrane Computing, 8th International Workshop, WMC 2007, Lecture Notes in Computer Science (vol. 4860). Springer

Freund, R., Păun, G., & Pérez-Jiménez, M. (2005). Tissue P systems with channel states. Theoretical Computer Science, 330, 101–116.

Gutiérrez-Escudero, R., Pérez-Jiménez, M., & Rius-Font, M. Characterizing tractability by tissue-like P systems. In: Păun et al. [53], pp. 289–300

Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2—-3), 279–308.

Ishdorj, T. O., Leporati, A., Pan, L., Zeng, X., & Zhang, X. (2010). Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theoretical Computer Science, 411(25), 2345–2358.

Krishna, S., Lakshmanan, K., & Rama, R. (2003). Tissue P systems with contextual and rewriting rules. In: Paun, G., Rozenberg, G., Salomaa, A., Zandron C. (Eds.) Membrane Computing, Lecture Notes in Computer Science (vol. 2597, pp. 339–351). Springer, Berlin

Krishna, S.N. (2007). On the computational power of flip-flop proteins on membranes. In: S.B. Cooper, B. Löwe, A. Sorbi (Eds.) Computation and Logic in the Real World, Lecture Notes in Computer Science (vol. 4497, pp. 695–704). Springer

Lakshmanan, K., & Rama, R. (2006). The computational efficiency of insertion-deletion tissue P systems. In K. Subramanian, K. Rangarajan, & M. Mukund (Eds.), Formal Models, Languages and Applications (pp. 235–245). New York: World Scientific.

van Leeuwen, J. (Ed.). (1990). Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity. Amsterdam: Elsevier.

Leporati, A. (2014). Computational complexity of P systems with active membranes. In: A. Alhazov, S. Cojocaru, M. Gheorghe, Y. Rogozhin, G. Rozenberg, A. Salomaa (Eds.) Fourteenth International Conference on Membrane Computing, CMC14, Lecture Notes in Computer Science (vol. 8340). Berlin: Springer.

Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M., & Zandron, C. (2009). Complexity aspects of polarizationless membrane systems. Natural Computing, 8(4), 703–717.

Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., & Zandron, C. (2014). Simulating elementary active membranes, with an application to the P conjecture. In: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, C. Zandron (Eds.) Membrane Computing—15th International Conference, CMC15, Lecture Notes in Computer Science (vol. 8961, pp. 284–299). Springer.

Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2015). Membrane division, oracles, and the counting hierarchy. Fundamental Information, 138(1–2), 97–111.

Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2017). Characterising the complexity of tissue P systems with fission rules. Journal of Computer and System Sciences, 90, 115–128.

Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., & Zandron, C. (2017). Shallow non-confluent P systems. In: A. Leporati, G. Rozenberg, A. Salomaa, C. Zandron (Eds.) Membrane Computing: 17th International Conference, CMC 2016, Lecture Notes in Computer Science (vol. 10105, pp. 307–316). Cham: Springer

Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., & Zandron, C. (2018) Solving qsat in sublinear depth. In: T. Hinze, J. Behre (Eds.) Proceedings of the Nineteenth International Conference on Membrane Computing (CMC19) (pp. 149–162). Berlin: Pro Business.

Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2018). Subroutines in P systems and closure properties of their complexity classes. Theoretical Computer Science. https://doi.org/10.1016/j.tcs.2018.06.012 .

Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2018). A survey on space complexity of P systems with active membranes. International Journal of Advances in Engineering Sciences and Applied Mathematics, 10(3), 221–229.

Leporati, A., Zandron, C., Ferretti, C., & Mauri, G. (2007). On the computational power of spiking neural P systems. In M. Gutiérrez-Naranjo, G. Păun, A. Romero-Jiménez, & A. Riscos-Núnez (Eds.), Fifth Brainstorming Week on Membrane Computing (pp. 227–245). Sevilla: Fenix Editora.

Liu, X., Suo, J., Leung, S., Liu, J., & Zeng, X. (2015). The power of time-free tissue P systems: Attacking NP-complete problems. Neurocomputing, 159(1), 151–156.

Macías-Ramos, L.F., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rius-Font, M., & Valencia-Cabrera, L. The efficiency of tissue P systems with cell separation relies on the environment. In: Csuhaj-Varjú et al. [9] (pp. 243–256).

Martín Vide, C., Pazos, J., Păun, G., & Rodríguez Patón, A. (2002). A new class of symbolic abstract neural nets: Tissue P systems. In: O. Ibarra, L. Zhang (Eds.) Computing and Combinatorics, Lecture Notes in Computer Science (vol. 2387, pp. 573–679). Berlin: Springer.

Martín Vide, C., Pazos, J., Păun, G., & Rodríguez Patón, A. (2003). Tissue P systems. Theoretical Computer Science, 296, 295–326.

Mauri, G., Leporati, A., Manzoni, L., Porreca, A.E., & Zandron, C. (2015). Complexity classes for membrane systems: A survey. In: A.H. Dediu, E. Formenti, C. Martín-Vide, B. Truthe (Eds.) Language and Automata Theory and Applications: 9th International Conference, LATA 2015, Lecture Notes in Computer Science (vol. 8977, pp. 56–69). Springer.

Murphy, N., & Woods, D. Active membrane systems without charges and using only symmetric elementary division characterise P. In: Eleftherakis et al. [11] (pp. 367–384).

Murphy, N., & Woods, D. (2011). The computational power of membrane systems under tight uniformity conditions. Natural Computing, 10(1), 613–632.

Murphy, N., & Woods, D. (2014). Uniformity is weaker than semi-uniformity for some membrane systems. Fundamenta Informaticae, 134(1–2), 129–152.

Orellana-Martín, D., Martínez-del Amor, M. Á., Pérez-Hurtado, I., Riscos-Núñez, A., Valencia-Cabrera, L., & Pérez-Jiménez, M. J. (2018). When object production tunes the efficiency of membrane systems. Theoretical Computer Science. https://doi.org/10.1016/j.tcs.2018.04.013 .

Pan, L., & Ishdorj, T. O. (2004). P systems with active membranes and separation rules. Journal of Universal Computer Science, 10(5), 630–649.

Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2011). Spiking neural P systems with neuron division and budding. Science China Information Sciences, 54(8), 1596.

Pan, L., Song, B., Valencia-Cabrera, L., & Pérez-Jiménez, M. J. (2018). The computational complexity of tissue P systems with evolutional symport/antiport rules. Complexity. https://doi.org/10.1155/2018/3745210 .

Păun, A., & Rodríguez-Patón, A. On flip-flop membrane systems with proteins. In: Eleftherakis et al. [11]. (pp. 414–427).

Pérez-Jiménez, M. A computational complexity theory in membrane computing. In: Păun et al. [53] (pp. 125–148).

Pérez-Jiménez, M., Romero-Jiménez, A., & Sancho-Caparrini, F. (2003). Complexity classes in models of cellular computing with membranes. Natural Computing, 2, 265–285.

Pérez-Jiménez, M. J., & Sosík, P. (2015). An optimal frontier of the efficiency of tissue P systems with cell separation. Fundamental Information, 138(1–2), 45–60.

Porreca, A., Leporati, A., Mauri, G., & Zandron, C. (2011). P systems with elementary active membranes: beyond NP and coNP. In: M. Gheorghe, T. Hinze, G. Păun, G. Rozenberg, A. Salomaa (eds.) Membrane Computing—11th International Conference, CMC11, Lecture Notes in Computer Science (vol. 6501, pp. 383–392). Springer.

Porreca, A.E., Leporati, A., Mauri, G., & Zandron, C. (2012). P systems simulating oracle computations. In: M. Gheorghe, G. Păun, G. Rozenberg, A. Salomaa, S. Verlan (eds.) Membrane Computing—12th International Conference, CMC12, Lecture Notes in Computer Science (vol. 7184, pp. 346–358). Springer.

Porreca, A. E., Mauri, G., & Zandron, C. (2010). Non-confluence in divisionless P systems with active membranes. Theoretical Computer Science, 411(6), 878–887.

Porreca, A.E., Murphy, N., & Pérez-Jiménez, M.J. (2012). An optimal frontier of the efficiency of tissue P systems with cell division. In: García-Quismondo, M. et al. (ed.) Proceedings of the Tenth Brainstorming Week on Membrane Computing (vol. II, pp. 141–166). Fénix Editora, Sevilla.

Păun, A., & Popa, B. (2006). P systems with proteins on membranes. Fundamenta Informaticae, 72(4), 467–483.

Păun, A., & Popa, B. (2006) P systems with proteins on membranes and membrane division. In: O. Ibarra, Z. Dang (Eds.) Developments in Language Theory, DLT 2006, Lecture Notes in Computer Science (vol. 4036, pp. 292–303). Berlin: Springer.

Păun, A., & Păun, G. (2002). The power of communication: P systems with symport/antiport. New Generation Computer, 20(3), 295–306.

Păun, G., Pérez-Jiménez, M., Riscos-Núnez, A., Rozenberg, G., & Salomaa, A. (eds.) (2010). Membrane Computing, 10th International Workshop, WMC 2009, Lecture Notes in Computer Science (vol. 5957). Berlin: Springer.

Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford Handbook of Membrane Computing. Oxford: Oxford University Press.

Păun, G. (2001). P systems with active membranes: attacking NP-complete problems. Journal of Automata, Languages, and Combinatorics, 6(1), 75–90.

Song, B., Pérez-Jiménez, M. J., & Pan, L. (2015). Efficient solutions to hard computational problems by P systems with symport/antiport rules and membrane division. Biosystems, 130, 51–58.

Song, B., Pérez-Jiménez, M. J., & Pan, L. (2017). An efficient time-free solution to QSAT problem using P systems with proteins on membranes. Information and Computation, 256, 287–299.

Song, B., Song, T., & Pan, L. (2017). A time-free uniform solution to subset sum problem by tissue P systems with cell division. Mathematical Structures in Computer Science, 27(1), 17–32.

Song, T., Macas-Ramos, L. F., Pan, L., & Pérez-Jiménez, M. J. (2014). Time-free solution to SAT problem using P systems with active membranes. Theoretical Computer Science, 529, 61–68.

Sosík, P. Limits of the power of tissue P systems with cell division. In: Csuhaj-Varjú et al. [9] (pp. 390–403).

Sosík, P., & Cienciala, L. (2012). Tissue P systems with cell separation: upper bound by PSPACE. In: A.H. Dediu, C. Martín-Vide, B. Truthe (Eds.) Theory and Practice of Natural Computing, TPNC 2012, Lecture Notes in Computer Science (vol. 7505, pp. 201–215). Springer.

Sosík, P., & Rodríguez-Patón, A. (2007). Membrane computing and complexity theory: A characterization of PSPACE. Journal of Computer and System Sciences, 73(1), 137–152.

Sosík, P. (2011). Selected topics in computational complexity of membrane systems. In: J. Kelemen, A. Kelemenová (Eds.) Computation, Cooperation and Life, Lecture Notes in Computer Science (vol. 6610, pp. 125–137). Springer.

Sosík, P., Păun, A., & Rodríguez-Patón, A. (2013). P systems with proteins on membranes characterize pspace. Theoretical Computer Science, 488, 78–95.

Sosík, P., Rodríguez-Patón, A., & Ciencialová, L. (2013). Polynomial time bounded computations in spiking neural P systems. Neural Network World, 23(1), 31–48. IF=0,412.

Valsecchi, A., Porreca, A., Leporati, A., Mauri, G., & Zandron, C. An efficient simulation of polynomial-space turing machines by P systems with active membranes. In: Păun et al. [53] (pp. 461–478).

Zandron, C., Leporati, A., Ferretti, C., Mauri, G., & Pérez-Jiménez, M. (2008). On the computational efficiency of polarizationless recognizer P systems with strong division and dissolution. Fundamenta Informaticae, 87(1), 79–91.