Phương trình trạng thái P–V–T của dung dịch rắn spessartine–almandine được đo bằng cách sử dụng tế bào đập kim cương và tán xạ X-quang đồng bộ tại chỗ

Physics and Chemistry of Minerals - Tập 42 - Trang 63-72 - 2014
Dawei Fan1, Jingui Xu1,2, Maining Ma2,3, Jing Liu4, Hongsen Xie1
1Laboratory for High Temperature and High Pressure Study of the Earth’s Interior of Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
2University of Chinese Academy of Sciences, Beijing, China
3Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing, China
4Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Phương trình trạng thái áp suất-thể tích-nhiệt độ (P–V–T) của hai mẫu garnet tự nhiên dọc theo mối liên kết spessartine–almandine (Spe–Alm) đã được đo ở nhiệt độ cao lên tới 800 K và áp suất cao lên tới 15.46 và 16.17 GPa cho Spe64Alm36 và Spe38Alm62, tương ứng, sử dụng phương pháp tán xạ X-quang góc phân tán tại chỗ và tế bào đập kim cương. Phân tích dữ liệu P–V ở nhiệt độ phòng theo phương trình trạng thái Birch–Murnaghan bậc ba cung cấp: V0 = 1,544.4 ± 0.4 Å3, K0 = 180 ± 3 GPa và K0' = 4.0 ± 0.4 cho Spe38Alm62, và V0 = 1,557.5 ± 0.3 Å3, K0 = 176 ± 2 GPa và K0' = 4.0 ± 0.3 cho Spe64Alm36. Việc điều chỉnh dữ liệu P–V–T của chúng tôi thông qua phương trình trạng thái Birch–Murnaghan bậc ba ở nhiệt độ cao cho các tham số thermoelastic: V0 = 1,544.6 ± 0.6 Å3, K0 = 180 ± 4 GPa, K0' = 4.0 ± 0.4, (∂K/∂T)Pb = −0.028 ± 0.005 GPa K−1 và α0 = (3.16 ± 0.14) × 10−5 K−1 cho Spe38Alm62, và V0 = 1,557.7 ± 0.9 Å3, K0 = 176 ± 4 GPa, K0' = 4.0 ± 0.5, (∂K/∂T)Pb = −0.029 ± 0.005 GPa K−1 và α0 = (3.04 ± 0.16) × 10−5 K−1 cho Spe64Alm36. Kết quả xác nhận rằng hàm lượng almandine làm tăng mô đun khối của mối liên kết spessartine–almandine theo một mô hình trộn gần như lý tưởng. Mối quan hệ giữa mô đun khối và hàm lượng phân tử almandine (XAlm) trong mối liên kết garnet này được suy ra là K0(GPa) = 171.6(±2.6) + 10.9(±1.8)XAlm. Kết quả hiện tại cũng được so sánh với các nghiên cứu trước đó xác định các đặc tính thermoelastic của các loại garnet khác.

Từ khóa

#spessartine #almandine #phương trình trạng thái #mô đun khối #phân tích thermoelastic

Tài liệu tham khảo

Akaogi M, Akimoto S (1977) Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12–Mg3Al2Si3O12 and Fe4Si4O12–Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 15:90–106 Allred A (1961) Electronegativity values from thermochemical data. J Inorg Nucl Chem 17:215–221 Anderson DL, Bass JD (1984) Mineralogy and composition of the upper mantle. Geophys Res Lett 11:637–640 Angel R (2000) Equation of state. Rev Mineral Geochem 41:35–60 Anovitz LM, Essene EJ, Metz GW, Bohlen SR, Westrum EF Jr, Hemingway BS (1993) Heat capacity and phase equilibria of almandine, Fe3Al2Si3O12. Geochim Cosmochim Acta 57:4191–4204 Babuška V, Fiala J, Kumazawa M, Ohno I, Sumino Y (1978) Elastic properties of garnet solid-solution series. Phys Earth Planet Inter 16:157–176 Bass JD (1989) Elasticity of grossular and spessartite garnets by Brillouin spectroscopy. J Geophys Res 94:7621–7628 Birch F (1986) Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high temperature domain. J Geophys Res 83:1257–1268 Conrad PG (1998) The stability of almandine at high pressure and temperature. Geophys Monogr Ser 101:393–400 Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Longman, Harlow Diella V, Sani A, Levy D, Pavese A (2004) High-pressure synchrotron X-ray diffraction study of spessartine and uvarovite: a comparison between different equation of state models. Am Mineral 89:371–376 Duffy TS, Anderson DL (1989) Seismic velocity in mantle minerals and mineralogy of the upper mantle. J Geophys Res 94:1895–1912 Dymshits AM, Litasov KD, Shatskiy A, Sharygin IS, Ohtani E, Suzuki A, Pokhilenko NP, Funakoshi K (2014) P–V–T equation of state of Na-majorite to 21 GPa and 1673 K. Phys Earth Plant Int 227:68–75 Fan DW, Zhou WG, Liu CQ, Liu YG, Wan F, Xing YS, Liu J, Bai LG, Xie HS (2009) The thermal equation of state of (Fe0.86Mg0.07Mn0.07)3Al2Si3O12 almandine. Mineral Mag 73:95–102 Fan DW, Zhou WG, Wei SY, Liu YG, Ma MN, Xie HS (2010) A simple external resistance heating diamond anvil cell and its application for synchrotron radiation X-ray diffraction. Rev Sci Instrum 81:053903 Fei YW, Ricolleau A, Frank M, Mibe K, Shen GY, Prakapenka V (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci 104:9182–9186 Gréaux S, Yamada A (2014) P–V–T equation of state of Mn3Al2Si3O12 spessartine garnet. Phys Chem Miner 41:141–149 Gréaux S, Kono Y, Nishiyama N, Kunimoto T, Wada K, Irifune T (2011) P–V–T equation of state of Ca3Al2Si3O12 grossular garnet. Phys Chem Miner 38:85–94 Gwanmesia GD, Liu J, Chen G, Kesson S, Rigden SM, Liebermann RC (2000) Elasticity of the pyrope (Mg3Al2Si3O12)–majorite (MgSiO3) garnets solid solution. Phys Chem Miner 27:445–452 Gwanmesia GD, Zhang J, Darling K, Kung J, Li B, Wang L, Neuville D, Liebermann RC (2006) Elasticity of polycrystalline pyrope Mg3Al2Si3O12 to 9 GPa and 1,000°C. Phys Earth Planet Inter 155:179–190 Gwanmesia GD, Wang L, Triplett R, Liebermann RC (2009) Pressure and temperature dependence of the elasticity of pyrope–majorite [Py60Mj40 and Py50Mj50] garnet solid solution measured by ultrasonic interferometry technique. Phys Earth Plant Inter 174:105–112 Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Press Res 14:235–248 Huang S, Chen JH (2014) Equation of state of pyrope–almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction. Phys Earth Planet Inter 228:88–91 Irifune T, Ringwood AE (1987) Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab. Earth Planet Sci Lett 86:365–376 Irifune T, Ringwood AE (1993) Phase transformation in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet Sci Lett 117:101–110 Ita J, Stixrude L (1992) Petrology, elasticity, and composition of the mantle transition zone. J Geophys Res 97:6849–6866 Karato S, Wang Z, Liu B, Fujino K (1995) Plastic deformation of garnets: systematics and implications for the rheology of the mantle transition zone. Earth Planet Sci Lett 130:13–30 Kono Y, Gréaux S, Higo Y, Ohfuji H, Irifune T (2010) Pressure and temperature dependences of elastic properties of grossular garnet up to 17 GPa and 1 650 K. J Earth Sci 21:782–791 Larson AC, Von Dreele RB (2000) GSAS general structure analysis system operation manual. Los Alamos Natl Lab LAUR 86–748:1–179 Le Bail A, Duroy H, Fourquet JL (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452 Léger JM, Redon AM, Chateau C (1990) Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa. Phys Chem Miner 17:161–167 Liu X, Shieh SR, Fleet ME, Akhmetov A (2008) High-pressure study on lead fluorapatite. Am Mineral 93:1581–1584 Nishihara Y, Takahashi E, Matsukage KN, Iguchi T, Nakayama K, Funakoshi K (2004) Thermal equation of state (Mg0.91Fe0.09)2SiO4 ringwoodite. Phys Earth Planet Inter 143–144:33–46 Nishihara Y, Aoki I, Takahashi E, Matsukage KN, Funakoshi KI (2005) Thermal equation of state of majorite with MORB composition. Phys Earth Planet Inter 148:73–84 Nobes RH, Akhmatskaya EV, Milman V, Winkler B, Pickard CJ (2000) Structure and properties of aluminosilicate garnets and katoite: an ab initio study. Comput Mater Sci 17:141–145 Nyame FK (2001) Petrological significance of manganese carbonate inclusions in spessartine garnet and relation to the stability of spessartine in metamorphosed manganese rich rocks. Contrib Mineral Petrol 141:733–746 Pavese A, Diella V, Pischedda V, Merli M, Bocchio R, Mezouar M (2001) Pressure–volume–temperature equation of state of andradite and grossular, by high-pressure and -temperature powder diffraction. Phys Chem Miner 28:242–248 Pavese A, Levy D, Curetti N, Diella V, Fumagalli P, Sani A (2003) Equation of state and compressibility of phlogopite by in situ high-pressure X-ray powder diffraction. Eur J Mineral 15:455–463 Sani A, Quartieri S, Boscherini F, Antonioli G, Feenstra A, Geiger CA (2004) Fe2+–O and Mn2+–O bonding and Fe2+- and Mn2+-vibrational properties in synthetic almandine-spessartine solid solutions: an X-ray absorption fine structure study. Eur J Mineral 16:801–808 Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767 Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213 Vinet P, Ferrante J, Smith JR, Rose JH (1986) A universal equation of state for solids. J Phys C: Solid State Phys 19:L467 Vinet P, Ferrante J, Rose JH, Smith JR (1987) Compressibility of solids. J Geophys Res 92:9319–9325 Wang ZC, Ji SC (2001) Elasticity of six polycrystalline silicate garnets at pressure up to 3.0 GPa. Am Miner 86:1209–1218 Wang Y, Weidner DJ, Zhang J, Gwanmesia GD, Liebermann RC (1998) Thermal equation of state of garnets along the pyrope–majorite join. Phys Earth Planet Inter 105:59–71 Weidner DJ, Wang Y (2000) Phase transformations: implications for mantle structure. Geophys Monogr Ser 117:215–235 Yagi T, Akaogi M, Shimomura O, Tamai H, Akimoto SI (1987) High pressure and high temperature equations of state of majorite. High-pressure research in mineral physics. Geophys Monogr Ser 39:141–147 Zhang J (1999) Room-temperature compressibilities of MnO and CdO: further examination of the role of cation type in bulk modulus systematics. Phys Chem Miner 26:644–648 Zhang L, Ahsbahs H, Kutoglu A, Geiger CA (1999) Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular and andradite garnets at high pressure. Phys Chem Miner 27:52–58 Zou Y, Gréaux S, Irifune T, Whitaker ML, Shinmei T, Higo Y (2012) Thermal equation of state of Mg3Al2Si3O12 pyrope garnet up to 19 GPa and 1700 K. Phys Chem Miner 39:589–598