P-Lingua in two steps: flexibility and efficiency

Journal of Membrane Computing - Tập 1 - Trang 93-102 - 2019
Ignacio Pérez-Hurtado1, David Orellana-Martín1, Gexiang Zhang2, Mario J. Pérez-Jiménez1
1Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, University of Seville, Seville, Spain
2School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China

Tóm tắt

Membrane computing is a bio-inspired computing paradigm that lacks in vivo implementation. That is why software or hardware implementations have to be used to validate models. Several tools have been created for this purpose; some of them are created for specific purposes, such as solving a computationally hard problem; and others are more generic, to cover a broad spectrum of possible models. The former have the advantage of being very efficient, crucial for solving large instances of certain problems; however, this efficiency leads to a loss of generality, since algorithms are usually hard-coded and they do not allow other models. On the contrary, the latter are perfect tools for researchers, given that new models can be checked without much effort by defining them in the framework; since these algorithms have to simulate as many models as possible, they lack specificities to improve the performance. P-Lingua has been widely used to simulate membrane systems, having integrated both a language and a simulator. To obtain better results in terms of time used to simulate models defined in this language, a new perspective is studied. The model defined in P-Lingua will be compiled into C++ source code that will implement an ad hoc simulator. This code will consider specifications about how rules have to be executed, that is, some simple specifications of the semantics. To show how it works, some examples of specifications of models will be presented, which can be simulated using the new-developed GNU GPLv3 command-line tool pcc.

Tài liệu tham khảo

Colomer, M., Margalida, A., & Pérez-Jiménez, M. J. (2013). Population dynamics P system (PDP) models: A standardized protocol for describing and applying novel bio-inspired computing tools. PLoS One, 8(14), 1–13. Cardona, M., Colomer, M. A., Pérez-Jiménez, M. J., Sanuy, D., & Margalida, A. (2008). Modeling ecosystems using P systems: The bearded vulture, a case study. In Membrane computing, 9th international workshop, WMC. Edinburgh, UK, July 28–31, 2008, Revised selected and invited papers. Lecture notes in computer science (2009) (Vol. 5391, pp. 137–156). Colomer, M., Pérez-Hurtado, I., Pérez Jiménez, M. J., & Riscos-Núñez, A. (2012). Comparing simulation algorithms for multienvironment probabilistic P system over a standard virtual ecosystem. Natural Computing, 11, 369–379. Freund, R., & Verlan, S. (2007). A formal framework for static (tissue) P systems. In G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane Computing. WMC 2007. Lecture Notes in Computer Science, (Vol. 4860, pp. 271–284). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-77312-2_17. Frisco, P., Gheorghe, M., & Pérez-Jiménez, M. J. (2014). Applications of membrane computing in systems and synthetic biology. In Emergence, complexity and computation (series ISSN 2194-7287), Vol. 7. Berlin: Springer International Publishing. eBook ISBN 978-3-319-03191-0, Hardcover ISBN 978-3-319-03190-3. https://doi.org/10.1007/978-3-319-03191-0. García-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2010). An overview of P-Lingua 2.0. In G. Păun, M. J. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, & A. Salomaa (Eds.) Membrane Computing. WMC 2009. Lecture Notes in Computer Science, (Vol. 5957, pp. 264–288). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-11467-0_20 Ionescu, M., Păun, Gh, & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2–3), 279–308. Macías, L. F., Pérez-Hurtado, I., García-Quismondo, M., Valencia, L., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2012). A P-Lingua based simulator for spiking neural P systems. In M. Gheorghe, G. Păun, G. Rozenberg, A. Salomaa, & S. Verlan (Eds.) Membrane Computing Lecture notes in computer science, CMC 2011 (Vol. 7184, pp. 257–281). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-28024-5_18. Martín-Vide, C., Păun, Gh, Pazos, J., & Rodríghez-Patón, A. (2003). Tissue P systems. Theoretical Computer Science, 296(2), 295–326. Martínez-del-Amor, M. A., Pérez-Hurtado, I., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2010). A P-Lingua based simulator for tissue P systems. Journal of Logic and Algebraic Programming, 79(6), 374–382. https://doi.org/10.1016/j.jlap.2010.03.009 Martínez-del-Amor, M. A., Pérez-Hurtado, I., García-Quismondo, M., et al. (2013). DCBA: Simulating population dynamics P systems with proportional objects distribution. Lecture notes in computer science, Vol. 7762, pp. 257–276. Martínez-del-Amor, M. A., García-Quismondo, M., Macías-Ramos, L. F., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2015). Simulating P systems on GPU devices: A survey. Fundamenta Informaticae, 136(3), 269–284. Pan, L., Paun, Gh., Pérez-Jiménez, M. J., & Song, T. Bio-inspired computing: Theories and applications. Communications in computer and information science (series ISSN 1865-0929), Vol. 472. Berlin: Springer. Print ISBN 978-3-662-45048-2, Online ISBN 978-3-662-45049-9, 2014. https://doi.org/10.1007/978-3-662-45049-9. Pan, L., & Păun, Gh. (2009). Spiking neural P systems with anti-matter. International Journal of Computers Communications & Control, 4(3), 273–282. Păun, Gh, Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford handbook of membrane computing. Oxford: Oxford University Press. Păun, Gh. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143 and Turku Center for CS-TUCS Report No. 208, 1998. Păun, Gh. (2002). Membrane computing. An introduction. Berlin: Springer. Păun, Gh. (2001). P systems with active membranes: Attacking NP-complete problems. Journal of Automata, Languages and Combinatorics, 6, 75–90. Peng, H., Wang, J., Ming, J., Shi, P., Pérez-Jiménez, M. J., Yu, W., & Tao, Ch. (2017). Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2017.2670602 (in press). Pérez-Hurtado, I., Valencia-Cabrera, L., Chacón, J. M., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2014). A P-Lingua based simulator for tissue P systems with cell separation. Romanian Journal of Information Science and Technology, 17(1), 89–102. Pérez-Hurtado, I., Valencia-Cabrera, L., Pérez-Jiménez, M. J., Colomer, M., & Riscos-Núñez, A. (2010). MeCoSim: A general purpose software tool for simulating biological phenomena by means of P Systems. In IEEE fifth international conference on bio-inpired computing: Theories and applications (BIC-TA 2010), pp. 637–643. Romero-Campero, F. J., & Pérez-Jiménez, M. J. (2008). A model of the quorum sensing system in Vibrio Fischeri using P systems. Artificial Life, 14(1), 95–109. https://doi.org/10.1162/artl.2008.14.1.95. Zhang, G., Pérez-Jiménez, M. J., & Gheorghe, M. (2017). Real-life applications with membrane computing. In Emergence, complexity and computation (series ISSN 2194-7287), Vol. 25. Berlin: Springer International Publishing. Online ISBN 978-3-319-55989-6, Print ISBN 978-3-319-55987-2. https://doi.org/10.1007/978-3-319-55989-6. The P-Lingua web page: http://www.p-lingua.org. Accessed 15 Dec 2018. The PMCGPU web page: https://sourceforge.net/projects/pmcgpu/. Accessed 15 Dec 2018. The MeCoSim web page: http://www.p-lingua.org/mecosim/. Accessed 15 Dec 2018. The Flex web page: https://github.com/westes/flexl. Accessed 15 Dec 2018. The Bison web page: https://www.gnu.org/software/bison/. Accessed 15 Dec 2018. The JSON web page: https://www.json.org/. Accessed 15 Dec 2018. The GNU g++ compiler: https://gcc.gnu.org/. Accessed 15 Dec 2018.