Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Vòng lặp tĩnh điện P-E mỏng trong gốm Ba0.3Sr0.7TiO3 biến đổi Bi0.5Na0.5TiO3 cho ứng dụng lưu trữ năng lượng
Tóm tắt
Gốm (Ba0.3Sr0.7)x(Bi0.5Na0.5)1-xTiO3 (BSxBNT, x = 0.3–0.8) đã được chế tạo nhằm nghiên cứu cấu trúc, tính chất điện môi và tính chất ferroelectric của chúng. Gốm BSxBNT sở hữu cấu trúc perovskite tinh khiết, chuyển từ cấu trúc đối xứng tứ diện sang đối xứng giả lập thể khối khi giá trị x tăng, điều này được xác nhận bởi các kết quả nhiễu xạ tia X (XRD) và Raman. Tm tương ứng với nhiệt độ gần đạt được hằng số điện môi tối đa giảm dần từ 110 °C (x = 0.3) đến -45 °C (x = 0.8), qua Tm = 36 °C (x = 0.5) với hằng số điện môi tối đa (ɛr = 5920 @1 kHz) xung quanh nhiệt độ phòng. Độ cực bão hòa Ps giảm dần trong khi độ cực còn lại Pr giảm mạnh theo sự gia tăng của giá trị x, khiến cho vòng lặp tĩnh điện P-E của gốm BSxBNT trở nên mỏng. Sự khác biệt tối đa giữa Ps và Pr (Ps-Pr) được đạt được cho gốm BSxBNT với x = 0.5, tại đó đạt được mật độ năng lượng phục hồi cao (Wrec = 1.04 J/cm3) dưới một điện trường áp dụng 100 kV/cm với hiệu suất η = 77%. Trong khi đó, các vòng P-E thay đổi theo nhiệt độ, các phép đo suy giảm, và các đặc điểm đổ điện cho mẫu x = 0.5 cho thấy khả năng tiềm năng trong việc trở thành vật liệu ứng viên cho siêu tụ điện lưu trữ năng lượng trong các ứng dụng nguồn xung.
Từ khóa
#gốm BSxBNT #cấu trúc perovskite #tính chất điện môi #tính chất ferroelectric #vòng lặp tĩnh điện P-E #năng lượng lưu trữTài liệu tham khảo
Yang LT, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019, 102: 72–108.
Zhao L, Liu Q, Gao J, et al. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv Mater 2017, 29: 1701824.
Yao ZH, Song Z, Hao H, et al. Homogeneous/inhomogeneous-structured dielectrics and their energystorage performances. Adv Mater 2017, 29: 1601727.
Yuan QB, Li G, Yao FZ, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 2018, 52: 203–210.
Li Q, Yao FZ, Liu Y, et al. High-temperature dielectric materials for electrical energy storage. Annu Rev Mater Res 2018, 48: 219–243.
Wu YC, Fan YZ, Liu NT, et al. Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications. J Mater Chem C 2019, 7: 6222–6230.
Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019, 365: 578–582.
Huang Y, Li F, Hao H, et al. (Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J Materiomics 2019, 5: 385–393.
Pan ZB, Hu D, Zhang Y, et al. Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J Mater Chem C 2019, 7: 4072–4078.
Xu Q, Song Z, Tang WL, et al. Ultra-wide temperature stable dielectrics based on Bi0.5Na0.5TiO3-NaNbO3 system. J Am Ceram Soc 2015, 98: 3119–3126.
Gao F, Dong XL, Mao CL, et al. Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 leadfree anti-ferroelectric ceramics. J Am Ceram Soc 2011, 94: 4382–4386.
Hao JG, Shen B, Zhai JW, et al. Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3-(K0.5Bi0.5)TiO3-(K0.5Na0.5)NbO3 system. J Appl Phys 2013, 113: 114106.
Cao WP, Li WL, Zhang TD, et al. High-energy storage density and efficiency of (1-x)[0.94 NBT-0.06 BT]-xST lead-free ceramics. Energy Technol 2015, 3: 1198–1204.
Yang LT, Kong X, Cheng ZX, et al. Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J Mater Chem A 2019, 7: 8573–8580.
Yang HB, Liu PF, Yan F, et al. A novel lead-free ceramic with layered structure for high energy storage applications. J Alloys Compd 2019, 773: 244–249.
Li F, Zhai JW, Shen B, et al. Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.2-0.1)TiO3 ergodic relaxor ceramics. Mater Res Lett 2018, 6: 345–352.
Li F, Yang K, Liu X, et al. Temperature induced high charge-discharge performances in lead-free Bi0.5Na0.5TiO3-based ergodic relaxor ferroelectric ceramics. Scr Mater 2017, 141: 15–19.
Roukos R, Zaiter N, Chaumont D. Relaxor behaviour and phase transition of perovskite ferroelectrics-type complex oxides (1-x)Na0.5Bi0.5TiO3-xCaTiO3 system. J Adv Ceram 2018, 7: 124–142.
Ye Y, Zhang SC, Dogan F, et al. Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. In Proceedings of the. 14th IEEE International Pulsed Power Conference, Dallas, Texas, USA, 2003, 711: 719–722
Wang Y, Shen ZY, Li YM, et al. Optimization of energy storage density and efficiency in BaxSr1-xTiO3 (x≤0.4) paraelectric ceramics. Ceram Int 2015, 41: 8252–8256.
Shen ZY, Wang Y, Tang YX, et al. Glass modified Barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. J Materiomics 2019, 5: 641–648.
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst Sect A 1976, 32: 751–767.
Rout D, Moon KS, Kang SJL, et al. Dielectric and Raman scattering studies of phase transitions in the (100-x)Na0.5Bi0.5TiO3-xSrTiO3 system. J Appl Phys 2010, 108: 084102.
Petzelt J, Kamba S, Fabry J, et al. Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3. J Phys: Condens Matter 2004, 16: 2719–2731.
Kreisel J, Glazer AM, Jones G, et al. An X-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: The (Na1-xKx)0.5Bi0.5TiO3(0 ≤ x ≤ 1) solid solution. J Phys: Condens Matter 2000, 12: 3267–3280.
Mendez-Gonzalez Y, Pelaiz-Barranco A, Curcio AL, et al. Raman spectroscopy study of the La-modified (Bi0.5Na0.5)0.92Ba0.08TiO3 lead-free ceramic system. J Raman Spectrosc 2019, 50: 1044–1050.
Wang J, Zhou ZH, Xue JM. Phase transition, ferroelectric behaviors and domain structures of (Na1/2Bi1/2)1-xTiPbxO3 thin films. Acta Mater 2006, 54: 1691–1698.
Kreisel J, Glazer AM, Bouvier P, et al. High-pressure Raman study of a relaxor ferroelectric: TheNa0.5Bi0.5TiO3 perovskite. Phys Rev B 2001, 63: 174106.
Li F, Zhai JW, Shen B, et al. Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3- SrTiO3-NaNbO3 lead-free ferroelectric ceramics. J Appl Phys 2017, 121: 054103.
Fu J, Zuo RZ. Giant electrostrains accompanying the evolution of a relaxor behavior in Bi(Mg,Ti)O3-PbZrO3-PbTiO3 ferroelectric ceramics. Acta Mater 2013, 61: 3687–3694.
Cross LE. Relaxor ferroelectrics. Ferroelectrics 1987, 76: 241. 267.
Beuerlein MA, Kumar N, Usher TM, et al. Current understanding of structure-processing-property relationships in BaTiO3-Bi(M)O3 dielectrics. J Am Ceram Soc 2016, 99: 2849–2870.
Chen XL, Li X, Zhou HF, et al. Phase evolution, microstructure, electric properties of (Ba1-xBi0.67xNa0.33x) (Ti1-xBi0.33xSn0.67x)O3 ceramics. J Adv Ceram 2019, 8: 427–437.
Cao WP, Li WL, Dai XF, et al. Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J Eur Ceram Soc 2016, 36: 593–600.
Qi H, Zuo RZ. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J Mater Chem A 2019, 7: 3971.3978.
Zhao WL, Zuo RZ, Fu J, et al. Enhanced rhombohedral domain switching and low field driven high electromechanical strain response in BiFeO3-based relaxor ferroelectric ceramics. J Eur Ceram Soc 2016, 36: 2453. 2460.
Yan BB, Fan HQ, Wang C, et al. Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free ceramics. Ceram Int 2020, 46: 281–288.
Li Q, Zhang WM, Wang C, et al. Enhanced energy-storage performance of (1-x)(0.72Bi0.5Na0.5TiO3-0.28Bi0.2Sr0.7-0.1TiO3)-xLa ceramics. J Alloys Compd 2019, 775: 116–123.
Zhao NS, Fan HQ, Ren XH, et al. Dielectric, impedance and piezoelectric properties of (K0.5Nd0.5)TiO3-doped 0.67BiFeO3-0.33BaTiO3 ceramics. J Eur Ceram Soc 2019, 39: 4096–4102.
Zhao NS, Fan HQ, Ning L, et al. Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3-(Sr0.7Bi0.2)TiO3 lead-free ceramics. J Am Ceram Soc 2018, 101: 5578–5585.