Ozon hóa trong điều trị nâng cao nước thải đô thị thứ cấp để loại bỏ các vi chất ô nhiễm

Springer Science and Business Media LLC - Tập 27 - Trang 45460-45475 - 2020
Serdar Dogruel1, Zuhal Cetinkaya Atesci2, Egemen Aydin3, Elif Pehlivanoglu-Mantas1
1Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Turkey
2Environmental Engineering Department, Faculty of Engineering, Gebze Technical University, Gebze, Turkey
3Agat Laboratories, Quebec, Canada

Tóm tắt

Mục tiêu của nghiên cứu này là đánh giá thực nghiệm quy trình ozon hóa như một bước điều trị bổ sung để loại bỏ các chất ô nhiễm mới nổi từ nước thải thứ cấp của hai nhà máy xử lý nước thải (WWTP), một nhà máy nhận nước thải chủ yếu từ sinh hoạt (WWTP-A), và nhà máy còn lại là nước thải sinh hoạt cùng với dòng nước thải từ nhà máy thuộc da đã được xử lý trước (WWTP-B). Các thí nghiệm được thực hiện ở hai giá trị pH khác nhau (tức là, pH ban đầu và pH điều chỉnh 10) và tại sáu liều ozone khác nhau từ 0.2 đến 1.5 mg O3/mg DOC. Tổng cộng 20 hợp chất, bao gồm 12 vi chất ô nhiễm (MPs) và 8 chất chuyển hóa, đã được chọn làm các chất phân tích mục tiêu để đánh giá hiệu suất của quy trình ozon hóa. Khi các MPs và chất chuyển hóa được xem xét riêng lẻ, mức độ loại bỏ tối đa cho mỗi hợp chất được đạt được tại các liều ozone khác nhau; do đó, các liều ozone tối ưu đã được xác định dựa trên sự giảm tổng lượng MP. Ozon hóa ở pH ban đầu với liều ozone trong khoảng 0.4–0.6 và 0.8–1.0 mg O3/mg DOC được chọn là điều kiện vận hành tối ưu cho WWTP-A và WWTP-B, tương ứng, cả hai đều đạt được hiệu suất loại bỏ tổng thể trung bình là 55%. Điều trị bằng ozone chỉ cho hiệu quả loại bỏ kém đối với o-desmethyl naproxen (15%), được phát hiện là phần đóng góp chính, chiếm khoảng 30% tổng nồng độ MP trong nước thải thứ cấp. Cách tiếp cận có hệ thống được sử dụng trong nghiên cứu này có thể được áp dụng như một hướng dẫn cho các nhà máy xử lý nước thải sinh hoạt và đô thị khác, vốn được cho là có thành phần rất biến động về các MPs và chất chuyển hóa.

Từ khóa

#ozonation; wastewater treatment; micropollutants; secondary effluents; ozone doses

Tài liệu tham khảo

Abegglen C, Joss A, Siegrist H (2009) Eliminating micropollutants: wastewater treatment methods. Eawag News 67e:25-27. http://library.eawag.ch/eawag-publications/EAWAGnews/67E(2009).pdf Abtahi SM, Ilyas S, Joannis-Cassan C, Albasi C, de Vos WM (2018) Micropollutants removal from secondary-treated municipal wastewater using weak polyelectrolyte multilayer based nanofiltration membranes. J Membr Sci 548:654–666. https://doi.org/10.1016/j.memsci.2017.10.045 Altmann J, Ruhl AS, Zietzschmann F, Jekel M (2014) Direct comparison of ozonation and adsorption onto powdere activated carbon for micropollutant removal in advanced wastewater treatment. Water Res 55:185–193. https://doi.org/10.1016/j.watres.2014.02.025 Álvarez-Torrellas S, Rodríguez A, Ovejero G, García J (2016) Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem Eng J 283:936–947. https://doi.org/10.1016/j.cej.2015.08.023 Alves TC, Cabrera-Codony A, Barceló D, Rodriguez-Mozaz S, Pinheiro A, Gonzalez-Olmos R (2018) Influencing factors on the removal of pharmaceuticals from water with micro-grain activated carbon. Water Res 144:402–412. https://doi.org/10.1016/j.watres.2018.07.037 APHA, AWWA, WEF (2012) In: Rice EW, Baird RB, Eaton AD, Clesceri LS (eds) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington, DC Azhar MR, Abid HR, Sun H, Periasamy V, Tadé MO, Wang S (2016) Excellent performance of copper based meta organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. J Colloid Interface Sci 478:344–352. https://doi.org/10.1016/j.jcis.2016.06.032 Bahr C, Schumacher J, Ernst M, Luck F, Heinzmann B, Jekel M (2007) SUVA as control parameter for the effective ozonation of organic pollutants in secondary effluent. Water Sci Technol 55(12):267–274. https://doi.org/10.2166/wst.2007.418 Baresel C, Malmborg J, Ek M, Sehlén R (2016) Removal of pharmaceutical residues using ozonation as intermediate process step at Linköping WWTP, Sweden. Water Sci Technol 73(8):2017–2024. https://doi.org/10.2166/wst.2016.045 Beltrán F (2004) Ozone reaction kinetics for water and wastewater systems. CRC Press CLL (ISBN 978-1566706292), New York, p 354. https://doi.org/10.1201/9780203509173 Blackbeard J, Lloyd J, Magyar M, Mieog J, Linden KG, Lester Y (2016) Demonstrating organic contaminant removal in an ozone-based water reuse process at full scale. Environ Sci Water Res Technol 2:213–222. https://doi.org/10.1039/c5ew00186b Blair BD, Crago JP, Hedman CJ, Treguer RJF, Magruder C, Royer IS, Klaper RD (2013) Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater. Sci Total Environ 444:515–521. https://doi.org/10.1016/j.scitotenv.2012.11.103 Boehler M, Zwickenpflug B, Hollender J, Ternes T, Joss A, Siegrist H (2012) Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon. Water Sci Technol 66(10):2115–2121. https://doi.org/10.2166/wst.2012.353 Bonvin F, Jost L, Randin L, Bonvin E, Kohn T (2016) Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent. Water Res 90:90–99. https://doi.org/10.1016/j.watres.2015.12.001 Bourgin M, Beck B, Boehler M, Borowska E, Fleiner J, Salhi E, Teichler R, von Gunten U, Siegrist H, McArdell CS (2018) Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: abatement of micropollutants, formation of transformation products and oxidation by-products. Water Res 129:486–498. https://doi.org/10.1016/j.watres.2017.10.036 Boxall AB, Sinclair CJ, Fenner K, Kolpin D, Maund SJ (2004) When synthetic chemicals degrade in the environment: what are the absolute fate, effects, and potential risks to humans and the ecosystem? Environ Sci Technol 38(19):368A–375A. https://doi.org/10.1021/es040624v Choubert JM, Martin-Ruel S, Esperanza M, Budzinski H, Miège C, Lagarrigue C, Coquery M (2011) Limiting the emissions of micropollutants: what efficiency can we expect from wastewater treatment plants? Water Sci Technol 63(1):57–65. https://doi.org/10.2166/wst.2011.009 Chys M, Oloibiri VA, Audenaert WTM, Demeestere K, van Hulle SWH (2015) Ozonation of biologically treated landfill leachate: efficiency and insights in organic conversions. Chem Eng J 277:104–111. https://doi.org/10.1016/j.cej.2015.04.099 Chys M, Demeestere K, Ingabire AS, Dries J, van Langenhove H, van Hulle SWH (2017) Enhanced treatment of secondary municipal wastewater effluent: comparing (biological) filtration and ozonation in view of micropollutant removal, unselective effluent toxicity, and the potential for real-time control. Water Sci Technol 76(1–2):236–246. https://doi.org/10.2166/wst.2017.207 Cruz-Alcalde A, Esplugas S, Sans C (2019) Abatement of ozone-recalcitrant micropollutants during municipal wastewater ozonation: kinetic modelling and surrogate-based control strategies. Chem Eng J 360:1092–1100. https://doi.org/10.1016/j.cej.2018.10.206 de la Cruz N, Giménez J, Esplugas S, Grandjean D, de Alencastro LF, Pulgarin C (2012) Degradation of 32 emergent contaminants by UV and neutral photo-Fenton in domestic wastewater effluent previously treated by activated sludge. Water Res 46(6):1947–1957. https://doi.org/10.1016/j.watres.2012.01.014 Eggen RIL, Hollender J, Joss A, Schärer M, Stamm C (2014) Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol 48(14):7683–7689. https://doi.org/10.1021/es500907n Falås P, Wick A, Castronovo S, Habermacher J, Ternes TA, Joss A (2016) Tracing the limits of organic micropollutant removal in biological wastewater treatment. Water Res 95:240–249. https://doi.org/10.1016/j.watres.2016.03 Garcia-Ivars J, Martella L, Massella M, Carbonell-Alcaina C, Alcaina-Miranda MI, Iborra-Clar MI (2017) Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants. Water Res 125:360–373. https://doi.org/10.1016/j.watres.2017.08.070 Gerrity D, Gamage S, Holady JC, Mawhinney DB, Quiñones O, Trenholm RA, Snyder SA (2011) Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminants mitigation and disinfection. Water Res 45(5):2155–2165. https://doi.org/10.1016/j.watres.2010.12.031 Gligorovski S, Strekowski R, Barbati S, Vione D (2015) Environmental implications of hydroxyl radicals (•OH). Chem Rev 115(24):13051–13092. https://doi.org/10.1021/cr500310b Gomes J, Costa R, Quinta-Ferreira RM, Martins RC (2017) Application of ozonation for pharmaceuticals and personal care products removal from water. Sci Total Environ 586:265–283. https://doi.org/10.1016/j.scitotenv.2017.01.216 González O, Bayarri B, Aceña J, Pérez S, Barceló D (2016) Treatment technologies for wastewater reuse: fate of contaminants of emerging concern. In: Fatta-Kassinos D, Dionysiou DD, Kümmerer K (eds) Advanced treatment technologies for urban wastewater reuse. The handbook of environmental chemistry, vol 45. Springer, Heidelberg, pp 5–37. https://doi.org/10.1007/698_2015_363 Graça CAL, Maniero MG, De Andrade LM, Roberto Guimarães J, Teixeira ACSC (2019) Evaluation of amicarbazone toxicity removal through degradation processes based on hydroxyl and sulfate radicals. J Environ Sci Health A Tox Hazard Subst Environ Eng 54:1126–1143. https://doi.org/10.1080/10934529.2019.1643693 Grebel JE, Pignatello JJ, Mitch WA (2010) Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environ Sci Technol 44:6822–6828. https://doi.org/10.1021/es1010225 Gros M, Petrovic M, Ginebreda A, Barceló D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ Int 36(1):15–26. https://doi.org/10.1016/j.envint.2009.09.002 Grover DP, Zhou JL, Frickers PE, Readman JW (2011) Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: impact on receiving river water. J Hazard Mater 185(2–3):1005–1011. https://doi.org/10.1016/j.jhazmat.2010.10.005 Hofman-Caris CHM, Siegers WG, van de Merlen K, de Man AWA, Hofman JAMH (2017) Removal of pharmaceuticals from WWTP effluent: removal of EfOM followed by advanced oxidation. Chem Eng J 327:514–521. https://doi.org/10.1016/j.cej.2017.06.154 Hollender J, Zimmermann S, Koepke S, Krauss M, McArdell CS, Ort C, Singer H, von Gunten U, Siegrist H (2009) Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ Sci Technol 43(20):7862–7869. https://doi.org/10.1021/es9014629 Huber MM, Canonica S, Park GY, von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37(5):1016–1024. https://doi.org/10.1021/es025896h Huber MM, Göbel A, Joss A, Hermann N, Löffler D, McArdell CS, Ried A, Siegrist H, Ternes TA, von Gunten U (2005) Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ Sci Technol 39(11):4290–4299. https://doi.org/10.1021/es048396s Hübner U, Seiwet B, Reemtsma T, Jekel M (2014) Ozonation products of carbamazepine and their removal from secondary effluents by soil aquifer treatment—indications from column experiments. Water Res 49:34–43. https://doi.org/10.1016/j.watres.2013.11.016 Hübner U, von Gunten U, Jekel M (2015) Evaluation of the persistence of transformation products from ozonation of trace organic compounds—a critical review. Water Res 68:150–170. https://doi.org/10.1016/j.watres.2014.09.051 Ikehata K, Naghashkar NJ, El-Din MG (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28(6):353–414. https://doi.org/10.1080/01919510600985937 International Standards Organization (1986) Water quality—determination of the chemical oxygen demand. Ref No ISO 6060-1986, 1st edn. Geneva Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrovic M, Barceló D (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45(3):1165–1176. https://doi.org/10.1016/j.watres.2010.11.010 Joss A, Baenninger C, Foa P, Koepke S, Krauss M, McArdell CS, Rottermann K, Wei Y, Zapata A, Siegrist H (2011) Water reuse: >90% water yield in MBR/RO through concentrate recycling and CO2 addition as scaling control. Water Res 45(18):6141–6151. https://doi.org/10.1016/j.watres.2011.09.011 Justo A, González O, Aceña J, Pérez S, Barceló D, Sans C, Esplugas S (2013) Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2 and ozone. J Hazard Mater 263(2):268–274. https://doi.org/10.1016/j.jhazmat.2013.05.030 Kappel C, Kemperman AJB, Temmink H, Zwijnenburg A, Rijnaarts HHM, Nijmeijer K (2014) Impacts of NF concentrate recirculation on membrane performance in an integrated MBR and NF membrane process for wastewater treatment. J Membr Sci 453:359–368. https://doi.org/10.1016/j.memsci.2013.11.023 Kårelid V, Larsson G, Björlenius B (2017) Pilot-scale removal of pharmaceuticals in municipal wastewater: comparison of granular and powdered activated carbon treatment at three wastewater treatment plants. J Environ Manag 193:491–502. https://doi.org/10.1016/j.jenvman.2017.02.042 Khuntia S, Majumder SK, Ghosh P (2015) Quantitative prediction of generation of hydroxyl radicals from ozone microbubbles. Chem Eng Res Des 98:231–239. https://doi.org/10.1016/j.cherd.2015.04.003 Kim JH, Park PK, Lee CH, Kwon HH, Lee S (2008) A novel hybrid system for the removal of endocrine disrupting chemicals: nanofiltration and homogeneous catalytic oxidation. J Membr Sci 312(1–2):66–75. https://doi.org/10.1016/j.memsci.2007.12.039 Knopp G, Prasse C, Ternes TA, Cornel P (2016) Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters. Water Res 100:580–592. https://doi.org/10.1016/j.watres.2016.04.069 Kovalova L, Siegrist H, von Gunten U, Eugster J, Hagenbuch M, Wittmer A, Moser R, McArdell CS (2013) Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. Environ Sci Technol 47(14):7899–7908. https://doi.org/10.1021/es400708w Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4):417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086 Larsson E, al-Hamimi S, Jönsson JÅ (2014) Behaviour of nonsteroidal antiinflammatory drugs and eight of their metabolites during wastewater treatment studied by hollow fibre liquid phase microextraction and liquid chromatography mass spectrometry. Sci Total Environ 485-486:300–308. https://doi.org/10.1016/j.scitotenv.2014.03.055 Lee Y, von Gunten U (2016) Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects. Environ Sci Water Res Technol 2:421–442. https://doi.org/10.1039/c6ew00025h Lee Y, Gerrity D, Lee M, Bogeat AE, Salhi E, Gamage S, Trenholm RA, Wert EC, Snyder SA, von Gunten U (2013) Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information. Environ Sci Technol 47(11):5872–5881. https://doi.org/10.1021/es400781r Lee Y, Kovalova L, McArdell CS, von Gunten U (2014) Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Res 64:134–148. https://doi.org/10.1016/j.watres.2014.06.027 Loos R, Carvalho R, António DC, Comero S, Locoro G, Tavazzi S, Paracchini B, Ghiani M, Lettieri T, Blaha L, Jarosova B, Voorspoels S, Servaes K, Haglund P, Fick J, Lindberg RH, Schwesig D, Gawlik BM (2013) EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res 47(17):6475–6487. https://doi.org/10.1016/j.watres.2013.08.024 Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Kang J, Xia S, Zhang Z, Price WE (2014) Removal and fate of micropollutants in a sponge-based moving bed bioreactor. Bioresour Technol 159:311–319. https://doi.org/10.1016/j.biortech.2014.02.107 Mailler R, Gasperi J, Coquet Y, Buleté A, Vulliet E, Deshayes S, Zedek S, Mirande-Bret C, Eudes V, Bressy A, Caupos E, Moilleron R, Chebbo G, Rocher V (2016) Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot. Sci Total Environ 542:983–996. https://doi.org/10.1016/j.scitotenv.2015.10.153 Margot J, Kienle C, Magnet A, Weil M, Rossi L, de Alencastro LF, Abegglen C, Thonney D, Chèvre N, Schärer M, Barry DA (2013) Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Sci Total Environ 461-462:480–498. https://doi.org/10.1016/j.scitotenv.2013.05.034 Margot J, Rossi L, Barry DA, Holliger C (2015) A review of the fate of micropollutants in wastewater treatment plants. WIREs Water 2(5):457–487. https://doi.org/10.1002/wat2.1090 Martínez-Bueno MJ, Gómez MJ, Herrera S, Hernando MD, Agüera A, Fernández-Alba AR (2012) Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: two years pilot survey monitoring. Environ Pollut 164:267–272. https://doi.org/10.1016/j.envpol.2012.01.038 Maus C, Herbst H, Ante S, Becker HP, Glathe W, Börgers A, Türk J (2014) Information on configuration and design of ozone facilities for micropollutant elimination. KA 61(11):998–1006 (in German) Mecha AC, Onyango MS, Ochieng A, Momba MNB (2016) Impact of ozonation in removing organic micro-pollutants in primary and secondary municipal wastewater: effect of process parameters. Water Sci Technol 74(3):756–765. https://doi.org/10.2166/wst.2016.276 Mvula E, Naumov S, von Sonntag C (2009) Ozonolysis of lignin models in aqueous solution: anisole, 1,2-dimethoxybenzene, 1,4-dimethoxybenzene, and 1,3,5-trimethoxybenzene. Environ Sci Technol 43(16):6275–6282. https://doi.org/10.1021/es900803p Norte THO, Marcelino RBP, Medeiros FHA, Moreira RPL, Amorim CC, Lago RM (2018) Ozone oxidation of β-lactam antibiotic molecules and toxicity decrease in aqueous solution and industrial wastewaters heavily contaminated. Ozone Sci Eng 40(5):385–391. https://doi.org/10.1080/01919512.2018.1444977 Nowotny N, Epp B, von Sonntag C, Fahlenkamp H (2007) Quantification and modeling of the elimination behavior of ecologically problematic wastewater micropollutants by adsorption on powdered and granulated activated carbon. Environ Sci Technol 41(6):2050–2055. https://doi.org/10.1021/es0618595 Oller I, Miralles-Cuevas S, Aguera A, Malato S (2018) Monitoring and removal of organic micro-contaminants by combining membrane technologies with advanced oxidation processes. Curr Org Chem 22(11):1103–1119. https://doi.org/10.2174/1385272822666180404152113 Orhon D, Karahan O, Sozen S (1999) The effect of residual microbial products on the experimental assessment of the particulate inert COD in wastewaters. Water Res 30(14):3191–3203. https://doi.org/10.1016/S0043-1354(99)00207-9 Ortiz de García S, Pinto Pinto G, García Encina P, Irusta Mata R (2013) Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci Total Environ 444:451–465. https://doi.org/10.1016/j.scitotenv.2012.11.057 Östman M, Björlenius B, Fick J, Tysklind M (2019) Effect of full-scale ozonation and pilot-scale granular activated carbon on the removal of biocides, antimycotics and antibiotics in a sewage treatment plant. Sci Total Environ 649:1117–1123. https://doi.org/10.1016/j.scitotenv.2018.08.382 Penru Y, Choubert JM, Mathon B, Guillon A, Esperanza M, Cretollier C, Dherret L, Daval A, Masson M, Lagarrigue C, Miege C, Coquery M (2018) Urban wastewater micropollutant removal by ozonation: lesson learned from Sophia Antipolis wastewater facility. Techniques Sciences Méthodes 6:71–83 (in French). https://hal.inrae.fr/hal-02607570 Pomiès M, Choubert JM, Wisniewski C, Coquery M (2013) Modelling of micropollutant removal in biological wastewater treatments: a review. Sci Total Environ 443:733–748. https://doi.org/10.1016/j.scitotenv.2012.11.037 Prieto-Rodríguez L, Oller I, Klamerth N, Agüera A, Rodríguez EM, Malato S (2013) Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res 47(4):1521–1528. https://doi.org/10.1016/j.watres.2012.11.002 Reungoat J, Escher BI, Macova M, Argaud FX, Gernjak W, Keller J (2012) Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Res 46(3):863–872. https://doi.org/10.1016/j.watres.2011.11.064 Rizzo L, Agovino T, Nahim-Granados S, Castro-Alférez M, Fernandez-Ibanez P, Polo-López MI (2019a) Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: effect on contaminants of emerging concern and antibiotic resistance. Water Res 149:272–281. https://doi.org/10.1016/j.watres.2018.11.031 Rizzo L, Malato S, Antakyali D, Beretsou VG, Đolić MB, Gernjak W, Heath E, Ivancev-Tumbas I, Karaolia P, Ribeiro ARL, Mascolo G, McArdell CS, Schaar H, Silva AMT, Fatta-Kassinos D (2019b) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ 655:986–1008. https://doi.org/10.1016/j.scitotenv.2018.11.265 Rosal R, Rodríguez A, Perdigón-Melón JA, Petre A, García-Calvo E, Gómez MJ, Agüera A, Fernández-Alba AR (2010) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44(2):578–588. https://doi.org/10.1016/j.watres.2009.07.004 Ruhl AS, Altmann J, Zietzschmann F, Meinel F, Sperlich A, Jekel M (2014) Integrating micropollutant removal by powdered activated carbon into deep bed filtration. Water Air Soil Pollut 225(1877):1–11. https://doi.org/10.1007/s11270-014-1877-1 Schaar H, Clara M, Gans O, Kreuzinger N (2010) Micropollutant removal during biological wastewater treatment and a subsequent ozonation step. Environ Pollut 158(5):1399–1404. https://doi.org/10.1016/j.envpol.2009.12.038 Schollée JE, Bourgin M, von Gunten U, McArdell CS, Hollender J (2018) Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments. Water Res 142:267–278. https://doi.org/10.1016/j.watres.2018.05.045 Singh S, Seth R, Tabe S, Yang P (2015) Oxidation of emerging contaminants during pilot-scale ozonation of secondary treated municipal effluent. Ozone Sci Eng 37(4):323–329. https://doi.org/10.1080/01919512.2014.998755 Sousa JCG, Ribeiro AR, Barbosa MO, Ribeiro C, Tiritan ME, Fernando MFR, Silva AMT (2019) Monitoring of the 17 EU Watch List contaminants of emerging concern in the Ave and the Sousa Rivers. Sci Total Environ 649:1083–1095. https://doi.org/10.1016/j.scitotenv.2018.08.309 Sui Q, Huang J, Deng S, Yu G, Fan Q (2010) Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res 44(2):417–426. https://doi.org/10.1016/j.watres.2009.07.010 Sun Y, Angelotti B, Brooks M, Dowbiggin B, Evans PJ, Devins B, Wang ZW (2018) A pilot-scale investigation of disinfection by-product precursors and trace organic removal mechanisms in ozone-biologically activated carbon treatment for potable reuse. Chemosphere 210:539–549. https://doi.org/10.1016/j.chemosphere.2018.06.162 Taheran M, Brar SK, Verma M, Surampalli RY, Zhang TC, Valero JR (2016) Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci Total Environ 547:60–77. https://doi.org/10.1016/j.scitotenv.2015.12.139 Ternes TA, Stüber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37(8):1976–1982. https://doi.org/10.1016/S0043-1354(02)00570-5 Urtiaga AM, Pérez G, Ibáñez R, Ortiz I (2013) Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate. Desalination 331:26–34. https://doi.org/10.1016/j.desal.2013.10.010 Velázquez YF, Nacheva PM (2017) Biodegradability of fluoxetine, mefenamic acid, and metoprolol using different microbial consortiums. Environ Sci Pollut Res 24(7):6779–6793. https://doi.org/10.1007/s11356-017-8413-y Völker J, Stapf M, Miehe U, Wagner M (2019) Systematic review of toxicity removal by advanced wastewater treatment technologies via ozonation and activated carbon. Environ Sci Technol 53(13):7215–7233. https://doi.org/10.1021/acs.est.9b00570 von Sonntag C, von Gunten U (2012) Chemistry of ozone in water and wastewater treatment: from basic principles to applications. IWA Publishing, London. https://doi.org/10.2166/9781780400839 Wang H, Mustafa M, Yu G, Östman M, Cheng Y, Wang Y, Tysklind M (2019) Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process. Chemosphere 235:575–585. https://doi.org/10.1016/j.chemosphere.2019.06.205 Wert EC, Rosario-Ortiz FL, Snyder SA (2009) Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater. Water Res 43(4):1005–1014. https://doi.org/10.1016/j.watres.2008.11.050 Wu J, Wang B, Cagnetta G, Huang J, Wang Y, Deng S, Yu G (2020) Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation. Sep Purif Technol 239:116534. https://doi.org/10.1016/j.seppur.2020.116534 Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF (2017a) Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ 596-597:303–320. https://doi.org/10.1016/j.scitotenv.2017.04.102 Yang K, Yu J, Guo Q, Wang C, Yang M, Zhang Y, Xia P, Zhang D, Yu Z (2017b) Comparison of micropollutants’ removal performance between pre-ozonation and post-ozonation using a pilot study. Water Res 111:147–153. https://doi.org/10.1016/j.watres.2016.12.043 Yao W, Ur Rehman SW, Wang H, Yang H, Yu G, Wang Y (2018) Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O3, and an electro-peroxone process. Water Res 138:106–117. https://doi.org/10.1016/j.watres.2018.03.044 Yuan R, Ramjaun SN, Wang Z, Liu J (2012) Concentration profiles of chlorine radicals and their significances in •OH-induced dye degradation: kinetic modeling and reaction pathways. Chem Eng J 209:38–45. https://doi.org/10.1016/j.cej.2012.07.127 Zietzschmann F, Worch E, Altmann J, Ruhl AS, Sperlich A, Meinel F, Jekel M (2014) Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater. Water Res 65:297–306. https://doi.org/10.1016/j.watres.2014.07.043 Zimmermann SG, Wittenwiler M, Hollender J, Krauss M, Ort C, Siegrist H, von Gunten U (2011) Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: micropollutant oxidation, by-product formation and disinfection. Water Res 45(2):605–617. https://doi.org/10.1016/j.watres.2010.07.080