Oxytocin enables maternal behaviour by balancing cortical inhibition

Nature - Tập 520 Số 7548 - Trang 499-504 - 2015
Bianca Jones Marlin1, Mariela Mitre1, James A. D’amour1, Moses V. Chao2, Robert C. Froemke1
1Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, 10016, New York, USA
2Neuroscience Institute, New York University School of Medicine, New York, 10016, New York, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Richard, P., Moos, F. & Freund-Mercier, M. J. Central effects of oxytocin. Physiol. Rev. 71, 331–370 (1991)

Gimpl, G. & Fahrenholz, F. The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 81, 629–683 (2001)

Insel, T. R. & Young, L. J. The neurobiology of attachment. Nature Rev. Neurosci. 2, 129–136 (2001)

Insel, T. R. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65, 768–769 (2010)

Bartz, J. A., Zaki, J., Bolger, N. & Ochsner, K. N. Social effects of oxytocin in humans: Context and person matter. Trends Cogn. Sci. 15, 301–309 (2011)

Churchland, P. S. & Winkielman, P. Modulating social behavior with oxytocin: how does it work? What does it mean? Horm. Behav. 61, 392–399 (2012)

Pedersen, C. A., Ascher, J. A., Monroe, Y. L. & Prange, A. J. Oxytocin induces maternal behavior in virgin female rats. Science 216, 648–650 (1982)

Winslow, J. T. & Insel, T. R. Social status in pairs of male squirrel monkeys determines the behavioral response to central oxytocin administration. J. Neurosci. 11, 2032–2038 (1991)

Nishimori, K. et al. Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc. Natl Acad. Sci. USA 93, 11699–11704 (1996)

Zak, P. J., Stanton, A. A. & Ahmadi, S. Oxytocin increases generosity in humans. PLoS ONE 2, e1128 (2007)

Andari, E. et al. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc. Natl Acad. Sci. USA 107, 4389–4394 (2010)

Chang, S. W. & Platt, M. L. Oxytocin and social cognition in rhesus macaques: Implications for understanding and treating human psychopathology. Brain Res. 1580, 57–68 (2014)

Dulac, C., O’Connell, L. A. & Wu, Z. Neural control of maternal and paternal behaviors. Science 345, 765–770 (2014)

Rilling, J. K. & Young, L. J. The biology of mammalian parenting and its effects on offspring social development. Science 345, 771–776 (2014)

Yoshida, M. et al. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci. 29, 2259–2271 (2009)

Nakajima, M., Görlich, A. & Heintz, N. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons. Cell 159, 295–305 (2014)

Sewell, G. D. Ultrasonic communication in rodents. Nature 227, 410 (1970)

Noirot, E. Ultrasounds and maternal behavior in small rodents. Dev. Psychobiol. 5, 371–387 (1972)

Ehret, G. Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature 325, 249–251 (1987)

Fichtel, I. & Ehret, G. Perception and recognition discriminated in the mouse auditory cortex by c-Fos staining. Neuroreport 10, 2341–2345 (1999)

Ehret, G. Infant rodent ultrasounds – a gate to the understanding of sound communication. Behav. Genet. 35, 19–29 (2005)

Crawley, J. N. Behavioral phenotyping strategies for mutant mice. Neuron 57, 809–818 (2008)

Cohen, L., Rothschild, G. & Mizrahi, A. Multisensory integration of natural odors and sounds in the auditory cortex. Neuron 72, 357–369 (2011)

Hofstetter, K. M. & Ehret, G. The auditory cortex of the mouse: connections of the ultrasonic field. J. Comp. Neurol. 323, 370–386 (1992)

Liu, R. C., Linden, J. F. & Schreiner, C. E. Improved cortical entrainment to infant communication calls in mothers compared with virgin mice. Eur. J. Neurosci. 23, 3087–3097 (2006)

Liu, R. C. & Schreiner, C. E. Auditory cortical detection and discrimination correlates with communicative significance. PLoS Biol. 5, e173 (2007)

Rothschild, G., Cohen, L., Mizrahi, A. & Nelken, I. Elevated correlations in neuronal ensembles of mouse auditory cortex following parturition. J. Neurosci. 33, 12851–12861 (2013)

Koch, M. & Ehret, G. Estradiol and parental experience, but not prolactin are necessary for ultrasound recognition and pup-retrieving in the mouse. Physiol. Behav. 45, 771–776 (1989)

Irani, B. G. et al. Distribution and neurochemical characterization of protein kinase C-theta and -delta in the rodent hypothalamus. Neuroscience 170, 1065–1079 (2010)

Wu, Z. et al. An obligate role of oxytocin neurons in diet induced energy expenditure. PLoS ONE 7, e45167 (2012)

Knobloch, H. S. et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566 (2012)

Takayanagi, Y. et al. Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc. Natl Acad. Sci. USA 102, 16096–16101 (2005)

Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003)

Wehr, M. & Zador, A. M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003)

Tan, A. Y. & Wehr, M. Balanced tone-evoked synaptic excitation and inhibition in mouse auditory cortex. Neuroscience 163, 1302–1315 (2009)

Dorrn, A. L., Yuan, K., Barker, A. J., Schreiner, C. E. & Froemke, R. C. Developmental sensory experience balances cortical excitation and inhibition. Nature 465, 932–936 (2010)

Froemke, R. C., Merzenich, M. M. & Schreiner, C. E. A synaptic memory trace for cortical receptive field plasticity. Nature 450, 425–429 (2007)

Kruglikov, I. & Rudy, B. Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron 58, 911–924 (2008)

Letzkus, J. J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011)

Froemke, R. C. et al. Long-term modification of cortical synapses improves sensory perception. Nature Neurosci. 16, 79–88 (2013)

Owen, S. F. et al. Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature 500, 458–462 (2013)

Rudick, C. N. & Woolley, C. S. Estrogen regulates functional inhibition of hippocampal CA1 pyramidal cells in the adult female rat. J. Neurosci. 21, 6532–6543 (2001)

Loring, D. W. et al. Cerebral language lateralization: evidence from intracarotid amobarbital testing. Neuropsychologia 28, 831–838 (1990)

Bishop, D. V. Cerebral asymmetry and language development: cause, correlate, or consequence? Science 340, 1230531 (2013)

Yoon, H., Enquist, L. W. & Dulac, C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123, 669–682 (2005)

Fraser, E. J. & Shah, N. M. Complex chemosensory control of female reproductive behaviors. PLoS ONE 9, e90368 (2014)

Wacker, D. W. & Ludwig, M. Vasopressin, oxytocin, and social odor recognition. Horm. Behav. 61, 259–265 (2012)

Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011)

Bennur, S., Tsunada, J., Cohen, Y. E. & Liu, R. C. Understanding the neurophysiological basis of auditory abilities for social communication: a perspective on the value of ethological paradigms. Hear. Res. 305, 3–9 (2013)

Wu, Z., Autry, A. E., Bergan, J. F., Watabe-Uchida, M. & Dulac, C. G. Galanin neurons in the medial preoptic area govern parental behavior. Nature 509, 325–330 (2014)

Huber, D., Veinante, P. & Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308, 245–248 (2005)

Dölen, G., Darvishzadeh, A., Huang, K. W. & Malenka, R. C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184 (2013)

Gunaydin, L. A. et al. Ultrafast optogenetic control. Nature Neurosci. 13, 387–392 (2010)

Kubota, Y. et al. Structure and expression of the mouse oxytocin receptor gene. Mol. Cell. Endocrinol. 124, 25–32 (1996)

Harris, J. A. et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front. Neural Circuits 8, 76 (2014)

Fellous, J. M., Tiesinga, P. H., Thomas, P. J. & Sejnowski, T. J. Discovering spike patterns in neuronal responses. J. Neurosci. 24, 2989–3001 (2004)