Oxygen vacancy enriched NiMoO4 nanorods via microwave heating: a promising highly stable electrocatalyst for total water splitting

Journal of Materials Chemistry A - Tập 9 Số 19 - Trang 11691-11704
Arun Karmakar1,2, Kannimuthu Karthick1,2, Selvasundarasekar Sam Sankar1,2, Sangeetha Kumaravel1,2, Ragunath Madhu1,2, Subrata Kundu1,2
1Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
2Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India

Tóm tắt

Vacancy enriched NiMoO4(Vo) nanorods have been synthesized by utilizing microwave heating. The oxygen vacancy has bought an excellent OER/HER activity and to reach 10 mA cm−2, NiMoO4(Vo) as anode and cathode just required 360 mV as overpotential.

Từ khóa


Tài liệu tham khảo

Bockris, 2002, Int. J. Hydrogen Energy, 27, 731, 10.1016/S0360-3199(01)00154-9

Dincer, 2012, Int. J. Hydrogen Energy, 37, 1954, 10.1016/j.ijhydene.2011.03.173

Anantharaj, 2018, Energy Environ. Sci., 11, 744, 10.1039/C7EE03457A

Audichon, 2016, J. Phys. Chem. C, 120, 2562, 10.1021/acs.jpcc.5b11868

Rao, 2017, Energy Environ. Sci., 10, 2626, 10.1039/C7EE02307C

Tichenor, 1952, Ind. Eng. Chem., 44, 973, 10.1021/ie50509a022

Yu, 2020, Angew. Chem., Int. Ed., 59, 16544, 10.1002/anie.202003801

Suntivich, 2011, Science, 334, 1383, 10.1126/science.1212858

Karmakar, 2021, Inorg. Chem., 60, 2680, 10.1021/acs.inorgchem.0c03569

Karmakar, 2021, J. Mater. Chem. A, 9, 1314, 10.1039/D0TA09788H

Anantharaj, 2020, Small, 16, 1, 10.1002/smll.201905779

Anantharaj, 2016, ACS Catal., 6, 8069, 10.1021/acscatal.6b02479

Karmakar, 2021, Inorg. Chem., 60, 2023, 10.1021/acs.inorgchem.0c03514

Jin, 2017, ACS Energy Lett., 2, 1937, 10.1021/acsenergylett.7b00679

Zhu, 2019, ACS Energy Lett., 4, 987, 10.1021/acsenergylett.9b00382

Joo, 2019, Adv. Mater., 31, 1, 10.1002/adma.201806682

Kumaravel, 2019, Dalton Trans., 48, 17117, 10.1039/C9DT03941D

Han, 2015, J. Mater. Chem. A, 3, 16348, 10.1039/C5TA03394B

Zhang, 2016, Science, 352, 333, 10.1126/science.aaf1525

Karthick, 2020, Catal. Sci. Technol., 10, 3681, 10.1039/D0CY00310G

Zhang, 2020, New J. Chem., 44, 8176, 10.1039/D0NJ01232G

Zhang, 2018, J. Mater. Chem. A, 6, 12361, 10.1039/C8TA03047B

Chen, 2019, Chem.–Eur. J., 25, 280, 10.1002/chem.201803844

Jothi, 2015, Eur. J. Inorg. Chem., 2015, 3694, 10.1002/ejic.201500410

Liu, 2019, Nanoscale, 11, 8855, 10.1039/C9NR00658C

Arif, 2021, J. Energy Chem., 58, 237, 10.1016/j.jechem.2020.10.014

Zhu, 2020, Nano Energy, 73, 104761, 10.1016/j.nanoen.2020.104761

Zhou, 2017, Chem. Commun., 53, 11778, 10.1039/C7CC07186H

Yang, 2018, Small, 14, 1

Liu, 2017, Adv. Mater., 29, 1

Song, 2020, Chem. Soc. Rev., 49, 2196, 10.1039/C9CS00607A

Hao, 2019, Mater. Today Energy, 12, 453, 10.1016/j.mtener.2019.04.009

Karthick, 2017, Inorg. Chem., 56, 6734, 10.1021/acs.inorgchem.7b00855

Tao, 2016, J. Am. Chem. Soc., 138, 9978, 10.1021/jacs.6b05398

García-Mota, 2011, ChemCatChem, 3, 1607, 10.1002/cctc.201100160

Man, 2011, ChemCatChem, 3, 1159, 10.1002/cctc.201000397

Papageorgiou, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 2391, 10.1073/pnas.0911349107

Wendt, 2008, Science, 320, 1755, 10.1126/science.1159846