Oxygen vacancies-rich cobalt-doped NiMoO4 nanosheets for high energy density and stable aqueous Ni-Zn battery
Tóm tắt
The enhancement of energy density and cycling stability is in urgent need for the widespread applications of aqueous rechargeable Ni-Zn batteries. Herein, a facile strategy has been employed to construct hierarchical Co-doped Ni-MoO4 nanosheets as the cathode for high-performance Ni-Zn battery. Benefiting from the merits of substantially improved electrical conductivity and increased concentration of oxygen vacancies, the NiMoO4 with 15% cobalt doping (denoted as CNMO-15) displays the best capacity of 361.4 mA h g−1 at a current density of 3 A g−1 and excellent cycle stability. Moreover, the assembled CNMO-15//Zn battery delivers a satisfactory specific capacity of 270.9 mA h g-1 at 2 A g−1 and a remarkable energy density of 474.1 W h kg−1 at 3.5 kW kg−1, together with a maximum power density of 10.3 kW kg−1 achieved at 118.8 W h kg−1. Noticeably, there is no capacity decay with a 119.8% retention observed after 5000 cycles, demonstrating its outstanding long lifespan. This work might provide valuable inspirations for the fabrication of high performance Ni Zn batteries with superior energy density and impressive stability.
Tài liệu tham khảo
Huang J, Wang Z, Hou M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat Commun, 2018, 9: 2906
Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy, 2016, 1: 16039
Simon P, Gogotsi Y, Dunn B. Where do batteries end and super-capacitors begin? Science, 2014, 343: 1210–1211
Li YJ, Cui L, Da PF, et al. Multiscale structural engineering of Ni-doped CoO nanosheets for zinc-air batteries with high power density. Adv Mater, 2018, 30: 1804653
He J, Chen Y, Manthiram A. Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries. Adv Energy Mater, 2019, 9: 1900584
Naveed A, Yang H, Shao Y, et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries. Adv Mater, 2019, 31: 1900668
Li X, Guan C, Hu Y, et al. Nanoflakes of Ni-Co LDH and Bi2O3 assembled in 3D carbon fiber network for high-performance aqueous rechargeable Ni/Bi battery. ACS Appl Mater Interfaces, 2017, 9: 26008–26015
Sarkar D, Shukla A, Sarma DD. Substrate integrated nickel-iron ultrabattery with extraordinarily enhanced performances. ACS Energy Lett, 2016, 1: 82–88
Lei D, Lee DC, Magasinski A, et al. Performance enhancement and side reactions in rechargeable nickel-iron batteries with nanostructured electrodes. ACS Appl Mater Interfaces, 2016, 8: 2088–2096
Zhao X, Ma L, Shen X. Co-based anode materials for alkaline rechargeable Ni/Co batteries: a review. J Mater Chem, 2012, 22: 277–285
Gao XP, Yao SM, Yan TY, et al. Alkaline rechargeable Ni/Co batteries: cobalt hydroxides as negative electrode materials. Energy Environ Sci, 2009, 2: 502–505
Zeng Y, Lin Z, Meng Y, et al. Flexible ultrafast aqueous rechargeable Ni//Bi battery based on highly durable single-crystalline bismuth nanostructured anode. Adv Mater, 2016, 28: 9188–9195
Hao Z, Xu L, Liu Q, et al. On-chip Ni-Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics. Adv Funct Mater, 2019, 29: 1808470
Liu J, Guan C, Zhou C, et al. A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv Mater, 2016, 28: 8732–8739
Meng L, Lin D, Wang J, et al. Electrochemically activated nickelcarbon composite as ultrastable cathodes for rechargeable nickel-zinc batteries. ACS Appl Mater Interfaces, 2019, 11: 14854–14861
Huang M, Li M, Niu C, et al. Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Adv Funct Mater, 2019, 29: 1807847
Wang R, Han Y, Wang Z, et al. Nickel@nickel oxide core-shell electrode with significantly boosted reactivity for ultrahigh-energy and stable aqueous Ni-Zn battery. Adv Funct Mater, 2018, 28: 1802157
Lee DU, Fu J, Park MG, et al. Self-assembled NiO/Ni(OH)2 nanoflakes as active material for high-power and high-energy hybrid rechargeable battery. Nano Lett, 2016, 16: 1794–1802
Shang W, Yu W, Tan P, et al. Achieving high energy density and efficiency through integration: progress in hybrid zinc batteries. J Mater Chem A, 2019, 7: 15564–15574
Tan P, Chen B, Xu H, et al. Nanoporous NiO/Ni(OH)2 plates incorporated with carbon nanotubes as active materials of rechargeable hybrid zinc batteries for improved energy efficiency and high-rate capability. J Electrochem Soc, 2018, 165: A2119–A2126
Zeng Y, Lai Z, Han Y, et al. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv Mater, 2018, 30: 1802396
Wang X, Li M, Wang Y, et al. A Zn-NiO rechargeable battery with long lifespan and high energy density. J Mater Chem A, 2015, 3: 8280–8283
Jian Y, Wang D, Huang M, et al. Facile synthesis of Ni(OH)2/carbon nanofiber composites for improving NiZn battery cycling life. ACS Sustain Chem Eng, 2017, 5: 6827–6834
Xu C, Liao J, Yang C, et al. An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy, 2016, 30: 900–908
Gong M, Li Y, Zhang H, et al. Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ Sci, 2014, 7: 2025–2032
Chen C, Yan D, Luo X, et al. Construction of core-shell Ni-MoO4@Ni-Co-S nanorods as advanced electrodes for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces, 2018, 20: 4662–4671
Qing C, Yang C, Chen M, et al. Design of oxygen-deficient NiMoO4 nanoflake and nanorod arrays with enhanced supercapacitive performance. Chem Eng J, 2018, 354: 182–190
Liu Z, Zhan C, Peng L, et al. A CoMoO4−Co2Mo3O8 hetero-structure with valence-rich molybdenum for a high-performance hydrogen evolution reaction in alkaline solution. J Mater Chem A, 2019, 7: 16761–16769
Zhang Z, Zhang H, Zhang X, et al. Facile synthesis of hierarchical CoMoO4@NiMoO4 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. J Mater Chem A, 2016, 4: 18578–18584
Cheng D, Yang Y, Xie J, et al. Hierarchical NiCo2O4@NiMoO4 core-shell hybrid nanowire/nanosheet arrays for high-performance pseudocapacitors. J Mater Chem A, 2015, 3: 14348–14357
Zhang P, Zhou J, Chen W, et al. Constructing highly-efficient electron transport channels in the 3D electrode materials for highrate supercapacitors: the case of NiCo2O4@NiMoO4 hierarchical nanostructures. Chem Eng J, 2017, 307: 687–695
Yang J, Liu W, Niu H, et al. Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots. Nano Res, 2018, 11: 4744–4758
Sharma GP, Pala RGS, Sivakumar S. Ultrasmall NiMoO4 robust nanoclusters-active carbon composite for high performance extrinsic pseudocapacitor. Electrochim Acta, 2019, 318: 607–616
Lei X, Ge S, Tan Y, et al. Bimetallic phosphosulfide Zn-Ni-P-S nanosheets as binder-free electrodes for aqueous asymmetric supercapacitors with impressive performance. J Mater Chem A, 2019, 7: 24908–24918
Huang J, Wei J, Xiao Y, et al. When Al-doped cobalt sulfide nanosheets meet nickel nanotube arrays: a highly efficient and stable cathode for asymmetric supercapacitors. ACS Nano, 2018, 12: 3030–3041
Ling T, Zhang T, Ge B, et al. Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction. Adv Mater, 2019, 31: 1807771
Wang R, Lu Y, Zhou L, et al. Oxygen-deficient tungsten oxide nanorods with high crystallinity: promising stable anode for asymmetric supercapacitors. Electrochim Acta, 2018, 283: 639–645
Chiu KL, Lin LY. Applied potential-dependent performance of the nickel cobalt oxysulfide nanotube/nickel molybdenum oxide nanosheet core-shell structure in energy storage and oxygen evolution. J Mater Chem A, 2019, 7: 4626–4639
Lin J, Yao L, Li Z, et al. Hybrid hollow spheres of carbon@ CoxNi1−xMoO4 as advanced electrodes for high-performance asymmetric supercapacitors. Nanoscale, 2019, 11: 3281–3291
Xu K, Ma S, Shen Y, et al. CuCo2O4 nanowire arrays wrapped in metal oxide nanosheets as hierarchical multicomponent electrodes for supercapacitors. Chem Eng J, 2019, 369: 363–369
Ruan Y, Lv L, Li Z, et al. Ni nanoparticles@Ni-Mo nitride nanorod arrays: a novel 3D-network hierarchical structure for high areal capacitance hybrid supercapacitors. Nanoscale, 2017, 9: 18032–18041
Lu Z, Wu X, Lei X, et al. Hierarchical nanoarray materials for advanced nickel-zinc batteries. Inorg Chem Front, 2015, 2: 184–187
Shi W, Mao J, Xu X, et al. An ultra-dense NiS2/reduced graphene oxide composite cathode for high-volumetric/gravimetric energy density nickel-zinc batteries. J Mater Chem A, 2019, 7: 15654–15661
Zhou L, Zhang X, Zheng D, et al. Ni3S2@PANI core-shell nanosheets as a durable and high-energy binder-free cathode for aqueous rechargeable nickel-zinc batteries. J Mater Chem A, 2019, 7: 10629–10635
Huang M, Xu Z, Hou C, et al. Intermediate phase α-β-Ni1−xCox-(OH)2/carbon nanofiber hybrid material for high-performance nickel-zinc battery. Electrochim Acta, 2019, 298: 127–133
Lu Y, Wang J, Zeng S, et al. An ultrathin defect-rich Co3O4 nanosheet cathode for high-energy and durable aqueous zinc ion batteries. J Mater Chem A, 2019, 7: 21678–21683
Zhang H, Liu Q, Wang J, et al. Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ intercalation. J Mater Chem A, 2019, 7: 22079–22083
Hu P, Wang T, Zhao J, et al. Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets. ACS Appl Mater Interfaces, 2015, 7: 26396–26399
Zhang H, Zhang X, Li H, et al. Flexible rechargeable Ni//Zn battery based on self-supported NiCo2O4 nanosheets with high power density and good cycling stability. Green Energy Environ, 2018, 3: 56–62
Meng A, Yuan X, Shen T, et al. One-step synthesis of flower-like Bi2O3/Bi2Se3 nanoarchitectures and NiCoSe2/Ni0.85Se nanoparticles with appealing rate capability for the construction of high-energy and long-cycle-life asymmetric aqueous batteries. J Mater Chem A, 2019, 7: 17613–17625
Chao D, Zhu CR, Song M, et al. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv Mater, 2018, 30: 1803181