Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges

Surface Science Reports - Tập 62 Số 6 - Trang 219-270 - 2007
M. V. Ganduglia-Pirovano1, Alexander Hofmann1, Joachim Sauer1
1Humboldt Universität zu Berlin, Institut für Chemie, Unter den Linden 6, D-10099 Berlin, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rao, 1998

Henrich, 1994

2002, vol. 2

Tit, 1993, Electronic-structure of a single oxygen vacancy in rutile TiO2, Nuovo Cimento Soc. Ital. Fis. D-Condens. Matter At. Mol. Chem. Phys. Fluids Plasmas Biophys., 15, 1405

Purton, 1995, Electronic-structure and atomistic simulations of the ideal and defective surfaces of rutile, Surf. Sci., 336, 166, 10.1016/0039-6028(95)00511-0

Schierbaum, 1996, The electronic structure of intrinsic defects at TiO2(110) surfaces: An ab initio molecular orbital study, Int. J. Quantum Chem., 57, 1121, 10.1002/(SICI)1097-461X(1996)57:6<1121::AID-QUA10>3.0.CO;2-A

Ramamoorthy, 1994, Defects on TiO2(110) surfaces, Phys. Rev. B, 49, 7709, 10.1103/PhysRevB.49.7709

Mackrodt, 1997, An ab initio Hartree–Fock study of the electron-excess gap states in oxygen-deficient rutile TiO2, Surf. Sci., 384, 192, 10.1016/S0039-6028(97)00219-7

Lindan, 1997, First-principles spin-polarized calculations on the reduced and reconstructed TiO2(110) surface, Phys. Rev. B, 55, 15919, 10.1103/PhysRevB.55.15919

Lindan, 1997, Ab initio simulation of molecular processes on oxide surfaces, Faraday Discuss., 106, 135, 10.1039/a702103h

Paxton, 1998, Electronic structure of reduced titanium dioxide, Phys. Rev. B, 57, 1579, 10.1103/PhysRevB.57.1579

Bredow, 2002, Electronic structure of an isolated oxygen vacancy at the TiO2(110) surface, Chem. Phys. Lett., 355, 417, 10.1016/S0009-2614(02)00259-2

Menetrey, 2003, Reactivity of a reduced metal oxide surface: Hydrogen, water and carbon monoxide adsorption on oxygen defective rutile TiO2(110), Surf. Sci., 524, 49, 10.1016/S0039-6028(02)02464-0

Bouzoubaa, 2005, Comparison of the reduction of metal oxide surfaces: TiO2-anatase, TiO2-rutile and SnO2-rutile, Surf. Sci., 583, 107, 10.1016/j.susc.2005.03.029

Vijay, 2003, Adsorption of gold on stochiometric and reduced rutile TiO2(110) surfaces, J. Chem. Phys., 118, 6536, 10.1063/1.1557919

Oviedo, 2004, Oxygen vacancies on TiO2(110) from first-principles calculations, J. Chem. Phys., 121, 7427, 10.1063/1.1796253

Wu, 2004, First principles study of CO oxidation on TiO2(110): The role of surface oxygen vacancies, J. Chem. Phys., 120, 4512, 10.1063/1.1636725

Rasmussen, 2004, Adsorption, diffusion and dissociation of molecular oxygen at defected TiO2(110). A density functional study, J. Chem. Phys., 120, 988, 10.1063/1.1631922

Wu, 2003, Oxygen vacancy mediated adsorption and reactions of molecular oxygen on the TiO2(110) surface, Phys. Rev. B, 68, 241402(R), 10.1103/PhysRevB.68.241402

Capron, 2004, Density functional theory study of point defects in the Si–SiO2 system and in substoichiometric titanium dioxide TiO2−x, Int. J. Quantum Chem., 99, 677, 10.1002/qua.10846

Wang, 2005, Formation of oxygen vacancies on the TiO2(110) surfaces, Surf. Sci., 577, 69, 10.1016/j.susc.2004.12.017

Vittadini, 2002, Small gold clusters on stochiometric and defected TiO2 anatase (101) and their interaction with CO: A density functional study, J. Chem. Phys., 117, 353, 10.1063/1.1481376

Zhang, 2005, A theoretical study on the electronic structures of TiO2: Effect of Hartree–Fock exchange, J. Phys. Chem. B, 109, 19270, 10.1021/jp0523625

Wang, 2005, First-principles calculations on TiO2 doped by N, Nd, and vacancy, Solid State Commun., 136, 186, 10.1016/j.ssc.2005.05.042

Di Valentin, 2006, Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces, Phys. Rev. Lett., 97, 166803, 10.1103/PhysRevLett.97.166803

Cho, 2006, First-principle study of defects in rutile TiO2−x, Phys. Rev. B, 73, 193202, 10.1103/PhysRevB.73.193202

Di Valentin, 2005, Theory of carbon doping of titanium dioxide, Chem. Mater., 17, 6656, 10.1021/cm051921h

Hameeow, 2006, Influence of surface and subsurface defects on the behavior of the rutile TiO2(110) surface, Phys. Status Solidi A, 203, 2219, 10.1002/pssa.200566015

A. Hofmann, M.V. Ganduglia-Pirovano, J. Sauer, Calculations for this review, 2006

Eichler, 2001, Tetragonal Y-doped zirconia: Structure and ion conductivity, Phys. Rev. B, 64, 174103, 10.1103/PhysRevB.64.174103

Foster, 2001, Structure and electrical levels of point defects in monoclinic zirconia, Phys. Rev. B, 64, 224108, 10.1103/PhysRevB.64.224108

Foster, 2002, Modelling of point defects in monoclinic zirconia, J. Non-Cryst. Solids, 303, 101, 10.1016/S0022-3093(02)00974-2

Králik, 1998, Structural properties and quasiparticle band structure of zirconia, Phys. Rev. B, 57, 7027, 10.1103/PhysRevB.57.7027

Safonov, 2003, Oxygen vacancies in tetragonal ZrO2: Ab initio embedded cluster calculations, Microelectron. Eng., 69, 629, 10.1016/S0167-9317(03)00355-1

Hofmann, 2002, Hydrogen adsorption on the tetragonal ZrO2(101) surface: A theoretical study of an important catalytic reactant, Phys. Chem. Chem. Phys., 4, 3500, 10.1039/b202330j

Lambrecht, 1981, Electronic structure of the vanadyl oxygen vacancy in V 2O5: Periodic vacancy single layer model, Solid State Commun., 39, 257, 10.1016/0038-1098(81)90668-2

Hermann, 1999, Electronic properties, structure and adsorption at vanadium oxide: Density functional theory studies, Faraday Discuss., 114, 53, 10.1039/a903109j

Hermann, 2001, Oxygen vacancies at oxide surfaces: Ab initio density functional theory studies on vanadium pentoxide, Appl. Phys. A, 72, 429, 10.1007/s003390100756

R. Druzinić, Ph. D. Thesis, Freie Universität, Berlin, 1999

Sauer, 2004, Structure and reactivity of V 2O5: Bulk solid, nanosized clusters, species supported on silica and alumina, cluster cations and anions, Dalton Trans., 19, 3116, 10.1039/B402873B

Ganduglia-Pirovano, 2004, Stability of reduced V 2O5(001) surfaces, Phys. Rev. B, 70, 045422, 10.1103/PhysRevB.70.045422

Tokarz-Sobieraj, 2005, Reduction and re-oxidation of molybdena and vanadia: DFT cluster model studies, Catal. Today, 99, 241, 10.1016/j.cattod.2004.09.046

Sayle, 1994, The role of oxygen vacancies on ceria surfaces in the oxidation of carbon-monoxide, Surf. Sci., 316, 329, 10.1016/0039-6028(94)91225-4

Conesa, 1995, Computer modeling of surfaces and defects on cerium dioxide, Surf. Sci., 339, 337, 10.1016/0039-6028(95)00595-1

Skorodumova, 2002, Quantum origin of the oxygen storage capability of ceria, Phys. Rev. Lett., 89, 166601, 10.1103/PhysRevLett.89.166601

Yang, 2004, Atomic and electronic structure of unreduced and reduced CeO2 surfaces: A first-principles study, J. Chem. Phys., 120, 7741, 10.1063/1.1688316

Jiang, 2005, Theoretical study of environmental dependence of oxygen vacancy formation in CeO2, Appl. Phys. Lett., 87, 141917, 10.1063/1.2084324

Fabris, 2005, Taming multiple valency with density functionals: A case study of defective ceria, Phys. Rev. B, 71, 041102(R), 10.1103/PhysRevB.71.041102

Fabris, 2005, Reply to “Comment on ‘Taming multiple valency with density functionals: A case study of defective ceria”’, Phys. Rev. B, 72, 237102, 10.1103/PhysRevB.72.237102

Fabris, 2005, Electronic and atomistic structures of clean and reduced ceria surfaces, J. Phys. Chem. B, 109, 22860, 10.1021/jp0511698

Nolan, 2005, Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria, Surf. Sci., 576, 217, 10.1016/j.susc.2004.12.016

Nolan, 2005, The electronic structure of oxygen vacancy defects at the low index surfaces of ceria, Surf. Sci., 595, 223, 10.1016/j.susc.2005.08.015

Nolan, 2006, Oxygen vacancy formation and migration in ceria, Solid State Ion., 177, 3069, 10.1016/j.ssi.2006.07.045

Andersson, 2007, Modelling of CeO2, Ce2O3, and CeO2−x in the LDA+U formalism, Phys. Rev. B, 75, 035109, 10.1103/PhysRevB.75.035109

Perdew, 1992, Atoms, molecules, solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 46, 6671, 10.1103/PhysRevB.46.6671

Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Hammer, 1999, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals, Phys. Rev. B, 59, 7413, 10.1103/PhysRevB.59.7413

Becke, 1983, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648, 10.1063/1.464913

Lee, 1988, Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37, 785, 10.1103/PhysRevB.37.785

Anisimov, 1991, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B, 44, 943, 10.1103/PhysRevB.44.943

Anisimov, 1993, Density-functional theory and NiO photoemission spectra, Phys. Rev. B, 48, 16929, 10.1103/PhysRevB.48.16929

Liechtenstein, 1995, Density-functional theory and strong interactions: Orbital ordering in Mott–Hubbard insulators, Phys. Rev. B, 52, R5467, 10.1103/PhysRevB.52.R5467

Anisimov, 1997, First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method, J. Phys.: Condens. Matter, 9, 767, 10.1088/0953-8984/9/4/002

Mori-Sánchez, 2002, Rigorous characterization of oxygen vacancies in ionic oxides, Phys. Rev. B, 66, 075103, 10.1103/PhysRevB.66.075103

Pacchioni, 2000, Ab initio theory of point defects in oxide materials: Structure, properties, chemical reactivity, Solid State Sci., 2, 161, 10.1016/S1293-2558(00)00113-8

Pacchioni, 2000, Quantum chemistry of oxide surfaces: From CO chemisorption to the identification of the structure and nature of point defects on MgO, Surf. Rev. Lett., 7, 277, 10.1016/S0218-625X(00)00033-6

Pacchioni, 2001, Theory of point defects on ionic oxides, vol. 9

Menetrey, 2004, Formation of Schottky defects at the surface of MgO, TiO2, and SnO2: A comparative density functional theoretical study, J. Phys. Chem. B, 108, 12858, 10.1021/jp048497c

Carrasco, 2004, First principles analysis of the stability and difussion of oxygen vacancies in metal oxides, Phys. Rev. Lett., 93, 225502, 10.1103/PhysRevLett.93.225502

Carrasco, 2005, On the convergence of isolated neutral oxygen vacancy and divacancy properties in metal oxides using supercell models, J. Chem. Phys., 122, 224705, 10.1063/1.1924600

Shluger, 2003, Defects in wide-gap oxides: Computer modelling and challenges, 151

Illas, 1998, Magnetic coupling in ionic solids studied by density functional theory, J. Chem. Phys., 108, 2519, 10.1063/1.475636

Bredow, 2000, Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO, Phys. Rev. B, 61, 5194, 10.1103/PhysRevB.61.5194

Muscat, 2001, On the prediction of band gaps from hybrid functional theory, Chem. Phys. Lett., 342, 397, 10.1016/S0009-2614(01)00616-9

Kudin, 2002, Hybrid density-functional theory and the insulating gap of UO2, Phys. Rev. Lett., 89, 266402, 10.1103/PhysRevLett.89.266402

Moreira, 2002, Effect of Fock exchange on the electronic structure and magnetic coupling in NiO, Phys. Rev. B, 65, 155102, 10.1103/PhysRevB.65.155102

Hay, 2006, Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional, J. Chem. Phys., 125, 034712, 10.1063/1.2206184

Gygi, 1986, Self-consistent Hartree-Fock and screened-exchange calculations in solids — application to silicon, Phys. Rev. B, 34, 4405, 10.1103/PhysRevB.34.4405

Chawla, 1998, Exact exchange in ab initio molecular dynamics: An efficient plane-wave based algorithm, J. Chem. Phys., 108, 4697, 10.1063/1.476307

Heyd, 2003, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys., 118, 8207, 10.1063/1.1564060

Heyd, 2004, Assessment and validation of a screened Coulomb hybrid density functional, J. Chem. Phys., 120, 7274, 10.1063/1.1668634

Heyd, 2006, Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118 (2003) 8207], J. Chem. Phys., 124, 219906, 10.1063/1.2204597

Perdew, 1996, Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys., 105, 9982, 10.1063/1.472933

Adamo, 1999, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys., 110, 6158, 10.1063/1.478522

Ernzerhof, 1999, Assessment of the Perdew–Burke–Ernzerhof exchange–correlation functional, J. Chem. Phys., 110, 5029, 10.1063/1.478401

Paier, 2005, The Perdew–Burke–Ernzerhof exchange–correlation functional applied to the G2-1 test set using a plane-wave basis set, J. Chem. Phys., 122, 234102, 10.1063/1.1926272

Paier, 2006, Screened hybrid density functionals applied to solids, J. Chem. Phys., 124, 154709, 10.1063/1.2187006

Todorova, 2006, Molecular dynamics simulation of liquid water: Hybrid density functionals, J. Phys. Chem. B, 110, 3685, 10.1021/jp055127v

da Silva, 2007, A hybrid functionals applied to rare earth oxides: The example of ceria, Phys. Rev. B, 75, 045121, 10.1103/PhysRevB.75.045121

Herschend, 2005, Electronic structure of the CeO2(110) surface oxygen vacancy, Surf. Sci., 599, 173, 10.1016/j.susc.2005.09.045

Svane, 1990, Transition-metal oxides in the self-interaction corrected density-functional formalism, Phys. Rev. Lett., 65, 1148, 10.1103/PhysRevLett.65.1148

Hubbard, 1963, Electron correlations in narrow energy bands, Proc. R. Soc. Lond., Ser. A, 276, 238, 10.1098/rspa.1963.0204

Hubbard, 1964, Electron correlations in narrow energy bands. II. The degenerate band case, Proc. R. Soc. Lond., Ser. A, 277, 237, 10.1098/rspa.1964.0019

Hubbard, 1964, Electron correlations in narrow energy bands. III. An improved solution, Proc. R. Soc. Lond., Ser. A, 281, 401, 10.1098/rspa.1964.0190

Dudarev, 1998, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B, 57, 1505, 10.1103/PhysRevB.57.1505

Pickett, 1998, Reformulation of the LDA+U method for a local-orbital basis, Phys. Rev. B, 58, 1201, 10.1103/PhysRevB.58.1201

Bengone, 2000, Implementation of the projector augmented-wave LDA+U method: Application to the electronic structure of NiO, Phys. Rev. B, 62, 16392, 10.1103/PhysRevB.62.16392

Madsen, 2005, Charge order in magnetite. An LDA+U study, Europhys. Lett., 69, 777, 10.1209/epl/i2004-10416-x

Cococcioni, 2005, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B, 71, 035105, 10.1103/PhysRevB.71.035105

Vanderbilt, 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 7892, 10.1103/PhysRevB.41.7892

Kresse, 1994, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, J. Phys.: Condens. Matter, 6, 8245, 10.1088/0953-8984/6/40/015

Diebold, 2003, The surface science of titanium dioxide, Surf. Sci. Rep., 48, 53, 10.1016/S0167-5729(02)00100-0

Kavan, 1996, Electrochemical and photoelectrochemical investigation of single-crystal anatase, J. Amer. Chem. Soc., 118, 6716, 10.1021/ja954172l

Muscat, 2002, First-principles calculations of the phase stability of TiO2, Phys. Rev. B, 65, 224112, 10.1103/PhysRevB.65.224112

Barnard, 2004, Effect of particle morphology and surface hydrogenation on the phase stability of TiO2, Phys. Rev. B, 70, 235403, 10.1103/PhysRevB.70.235403

Ramamoorthy, 1994, First principles calculations of the energetics of stoichiometric TiO2 surfaces, Phys. Rev. B, 49, 16721, 10.1103/PhysRevB.49.16721

Lazzeri, 2001, Structure and energetics of stochiometric TiO2 anatase surfaces, Phys. Rev. B, 63, 155409, 10.1103/PhysRevB.63.155409

Diebold, 2003, One step towards bridging the materials gap: Surface studies of TiO2 anatase, Catal. Today, 85, 93, 10.1016/S0920-5861(03)00378-X

Samsonov, 1982

Andersson, 1957, Phase analysis studies on the titanium–oxygen system, Acta Chem. Scand., 11, 1641, 10.3891/acta.chem.scand.11-1641

Goodenough, 1972, Metallic oxides, vol. 5, 145

Gray, 1959, Defect structure and catalysis in the TiO2 system (semi-conducting and magnetic properties), J. Phys. Chem., 63, 472, 10.1021/j150574a006

Diebold, 2000, The relationship between bulk and surface properties of rutile TiO2(110), Surf. Rev. Lett., 7, 613, 10.1016/S0218-625X(00)00052-X

Iyengar, 1966, Electron spin resonance studies of the surface chemistry of rutile, J. Amer. Chem. Soc., 88, 5055, 10.1021/ja00974a001

Bennet, 1999, STM and LEED observations of the surface structure of TiO2(110) following crystallographic shear plane formation, Phys. Rev. B, 59, 10341, 10.1103/PhysRevB.59.10341

Hurum, 2003, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR, J. Phys. Chem. B, 107, 4545, 10.1021/jp0273934

Berger, 2005, Light-induced charged separation in anatase TiO2 particles, J. Phys. Chem. B, 109, 6061, 10.1021/jp0404293

Thompson, 2005, TiO2-based photocatalysis: Surface defects, oxygen and charge transfer, Topics in Catal., 35, 197, 10.1007/s11244-005-3825-1

Pan, 1992, Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities, J. Vac. Sci. Technol. A, 10, 2470, 10.1116/1.577986

Henderson, 1996, An HREELS and TPD study of water on TiO2(110): The extent of molecular versus dissociative adsorption, Surf. Sci., 355, 151, 10.1016/0039-6028(95)01357-1

Schaub, 2003, Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface, Science, 299, 377, 10.1126/science.1078962

Wahlström, 2004, Electron transfer-induced dynamics of oxygen molecules on the TiO2(110) surface, Science, 303, 511, 10.1126/science.1093425

Schaub, 2006, Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface (vol. 311, p. 377 (2003)), Science, 314, 925

Wendt, 2006, Formation and splitting of paired hydroxyl groups on reduced TiO2(110), Phys. Rev. Lett., 96, 066107, 10.1103/PhysRevLett.96.066107

Wendt, 2005, Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study, Surf. Sci., 598, 226, 10.1016/j.susc.2005.08.041

Harutaa, 1997, Size- and support-dependency in the catalysis of gold, Catal. Today, 36, 153, 10.1016/S0920-5861(96)00208-8

Valden, 1998, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Sience, 281, 1647, 10.1126/science.281.5383.1647

Campbell, 2004, The active site in nanoparticle gold catalysis, Sience, 306, 234, 10.1126/science.1104246

Chen, 2004, The structure of catalytically active gold on titania, Sience, 306, 252, 10.1126/science.1102420

Diebold, 2005, Dispersed Au atoms, supported on TiO2(110), Surf. Sci., 578, 1, 10.1016/j.susc.2005.01.029

Henrich, 1981, Surface electronic structure of TiO2: Atomic geometry, ligand coordination, and the effect of adsorbed hydrogen, Phys. Rev. B, 23, 6280, 10.1103/PhysRevB.23.6280

Aiura, 1994, Effects of surface oxygen vacancies on electronic states of TiO2(110), TiO2(001) and SrTiO3(001) surfaces, Physica B, 194–196, 1215, 10.1016/0921-4526(94)90937-7

Zhang, 1991, Cation–ligand hybridization for stoichiometric and reduced TiO2(110) surfaces determined by resonant photoemission, Phys. Rev. B, 43, 12004, 10.1103/PhysRevB.43.12004

Heise, 1992, Valence band densities-of-states of TiO2(110) from resonant photoemission and photoelectron diffraction, Solid State Commun., 84, 599, 10.1016/0038-1098(92)90198-I

Nerlov, 1996, Resonant photoemission from TiO2(110) surfaces: Implications on surface bonding and hybridization, Surf. Sci., 348, 28, 10.1016/0039-6028(95)00990-6

Thomas, 2003, Resonant photoemission of anatase TiO2(101) and (001) single crystals, Phys. Rev. B, 67, 035110, 10.1103/PhysRevB.67.035110

Kurtz, 1989, Synchrotron radiation studies of H2O adsorption on TiO2(110), Surf. Sci., 218, 178, 10.1016/0039-6028(89)90626-2

Krischok, 2005, MIES and UPS(HeI) studies on reduced TiO2(110), Surf. Interface Anal., 37, 77, 10.1002/sia.2013

Henrich, 1976, Observation of two-dimensional phases associated with defect states on the surface of TiO2, Phys. Rev. Lett., 36, 1335, 10.1103/PhysRevLett.36.1335

Sadeghi, 1988, Electronic interactions in the rhodium /TiO2 system, J. Catal., 109, 1, 10.1016/0021-9517(88)90179-0

Henderson, 2003, Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2(110), J. Phys. Chem. B, 107, 534, 10.1021/jp0262113

R. Dovesi, V.R. Saunders, C. Roetti, M. Causà, N.M. Harrison, R. Orlando, E. Aprà, CRYSTAL95, 1995

Howard, 1991, Structural and thermal parameters for rutile and anatase, Acta Cryst., B47, 462, 10.1107/S010876819100335X

Ceperley, 1980, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett., 45, 566, 10.1103/PhysRevLett.45.566

Zunger, 1980, A self-interaction corrected approach to many-electron systems: Beyond the local spin density approximation, Solid State Commun., 32, 933, 10.1016/0038-1098(80)91101-1

Perdew, 1983, Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities, Phys. Rev. Lett., 51, 1884, 10.1103/PhysRevLett.51.1884

Glassford, 1992, Structural and electronic properties of titanium dioxide, Phys. Rev. B, 46, 1284, 10.1103/PhysRevB.46.1284

Mo, 1995, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Phys. Rev. B, 51, 13023, 10.1103/PhysRevB.51.13023

Kuo, 2005, Density functional theory calculations of dense TiO2 polymorphs: Implication for visible-light-responsive photocatalysts, J. Phys. Chem. B, 109, 8693, 10.1021/jp0510903

Bredow, 2004, Electronic properties of rutile TiO2 ultrathin films: Odd-even oscillations with the number of layers, Phys. Rev. B, 70, 035419, 10.1103/PhysRevB.70.035419

Silvi, 1991, Pseudopotential periodic Hartree–Fock study of rutile TiO2, J. Phys. Chem. Solids, 52, 1005, 10.1016/0022-3697(91)90029-Y

Methfessel, 1988, Elastic constants and phonon frequencies of Si calculated by a fast full-potential linear-muffin-tin-orbital method, Phys. Rev. B, 38, 1537, 10.1103/PhysRevB.38.1537

Methfessel, 1989, Fast full-potential calculations with a converged basis of atom-centered linear muffin-tin orbitals: Structural and dynamic properties of silicon, Phys. Rev. B, 40, 2009, 10.1103/PhysRevB.40.2009

von Barth, 1972, A local exchange–correlation potential for the spin polarized case. I, J. Phys. C, 5, 1629, 10.1088/0022-3719/5/13/012

Moruzzi, 1978

Kresse, 1996, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0

Car, 1985, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55, 2471, 10.1103/PhysRevLett.55.2471

Bates, 1997, A systematic study of the surface energetics and structure of TiO2(110) by first-principles calculations, Surf. Sci., 385, 386, 10.1016/S0039-6028(97)00265-3

Hameeuw, 2006, The rutile TiO2(110) surface: Obtaining converged structural properties from first-priciples calculations, J. Chem. Phys., 124, 024708, 10.1063/1.2136158

Herzberg, 1989

Woning, 1983, Electrostatic potential calculations on crystalline TiO2: The surface reducibility of rutile and anatase, Chem. Phys. Lett., 101, 541, 10.1016/0009-2614(83)87030-4

Kleinman, 1982, Efficacious form for model pseudopotentials, Phys. Rev. Lett., 48, 1425, 10.1103/PhysRevLett.48.1425

Kofstad, 1962, Thermogravimetric studies of the defect structure of in rutile TiO2, J. Phys. Chem. Solids, 23, 1579, 10.1016/0022-3697(62)90240-8

Furche, 2006, The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry, J. Chem. Phys., 124, 044103, 10.1063/1.2162161

1981, vol. 3

1984, vol. 12

Kingon, 2000, Alternative dielectrics to silicon dioxide for memory and logic deviced, Nature, 406, 1032, 10.1038/35023243

Chandra, 1981

Rohr, 1978, Solid electrolytes, 431

Dittmar, 2004, Microwave plasma assisted preparation of disperse chromium oxide supported catalysts influence of the microwave plasma treatment on the properties of the supports, Catal. Today, 89, 169, 10.1016/j.cattod.2003.11.023

McCullough, 1959, The crystal structure of monoclinic ZrO2, Acta Cryst., 12, 507, 10.1107/S0365110X59001530

Smith, 1965, The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2, Acta Cryst., 18, 983, 10.1107/S0365110X65002402

Teufer, 1962, The crystal structure of tetragonal ZrO2, Acta Cryst., 15, 1187, 10.1107/S0365110X62003114

Smith, 1962, Verification of existence of cubic zirconia at high temperature, J. Amer. Chem. Soc., 45, 249

McComb, 1996, Bonding and electronic structure in zirconia pseudopolymorphs investigated by electron energy-loss spectroscopy, Phys. Rev. B, 54, 7094, 10.1103/PhysRevB.54.7094

French, 1994, Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2, Phys. Rev. B, 49, 5133, 10.1103/PhysRevB.49.5133

Morterra, 1993, Surface characterization of tetragonal ZrO2, Appl. Surf. Sci., 65–66, 257, 10.1016/0169-4332(93)90668-2

Christensen, 1998, First-principles study of the surfaces of zirconia, Phys. Rev. B, 58, 8050, 10.1103/PhysRevB.58.8050

Haase, 1998, The surface structure of sulfated zirconia, J. Amer. Chem. Soc., 120, 13503, 10.1021/ja9825534

Eichler, 2004, First-principles calculations for the surface termination of pure and yttria-doped zirconia surfaces, Phys. Rev. B, 69, 045402, 10.1103/PhysRevB.69.045402

Ben-Michael, 1991, ESR centers in reduced stabilized zirconia, Phys. Rev. B, 43, 7395, 10.1103/PhysRevB.43.7395

PaiVernecker, 1989, Color-center-induced band-gap shift in yttria-stabilized zirconia, Phys. Rev. B, 40, 8555, 10.1103/PhysRevB.40.8555

Merino, 1995, Paramagnetic electron traps in reduced stabilized zirconia, Phys. Rev. B, 52, 6150, 10.1103/PhysRevB.52.6150

Azzoni, 1989, Effects of yttria concentration on the EPR signal in X-Ray-irradiated yttria-stabilized zirconia, Phys. Rev. B, 40, 9333, 10.1103/PhysRevB.40.9333

Orera, 1990, Intrinsic electron and hole defects in stabilized zirconia single crystals, Phys. Rev. B, 42, 9782, 10.1103/PhysRevB.42.9782

Constantini, 2004, Colour-centre production in yttria-stabilized zirconia by swift charged particle irradiation, J. Phys.: Condens. Matter, 16, 3957, 10.1088/0953-8984/16/23/014

Mommer, 2000, Oxygen vacancy trapping in tetragonal ZrO2 studied by In–111/Cd perturbed angular correlation, Phys. Rev. B, 61, 162, 10.1103/PhysRevB.61.162

Karapetrova, 2001, Oxygen vacancies in pure tetragonal zirconia powders: Dependence on the presence of chlorine during processing, J. Amer. Ceram. Soc., 84, 65, 10.1111/j.1151-2916.2001.tb00609.x

Sanz, 1994, A resonant photoemission study of the ZrO2 valence band, Surf. Sci., 307, 848, 10.1016/0039-6028(94)91502-4

Morant, 1992, Ar-ion bombardment effects on ZrO2 surfaces, Phys. Rev. B, 45, 1391, 10.1103/PhysRevB.45.1391

Stapper, 1999, Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia, Phys. Rev. B, 59, 797, 10.1103/PhysRevB.59.797

Bogicevic, 2001, Defect ordering in aliovalently doped cubic zirconia from first principles, Phys. Rev. B, 6401, 014106, 10.1103/PhysRevB.64.014106

Bogicevic, 2001, Elastic reversal of electrostatically driven defect ordering in stabilized zirconia, Europhys. Lett., 56, 393, 10.1209/epl/i2001-00365-x

Bogicevic, 2003, Nature and strength of defect interactions in cubic stabilized zirconia, Phys. Rev. B, 67, 024106, 10.1103/PhysRevB.67.024106

Tojo, 1999, Molecular dynamics study on lattice vibration and heat capacity of yttria-stabilized zirconia, Solid State Ion., 118, 349, 10.1016/S0167-2738(98)00424-X

Ostanin, 2003, Effect of point defects on heat capacity of yttria-stabilized zirconia, Phys. Rev. B, 68, 172106, 10.1103/PhysRevB.68.172106

Khan, 1998, Cation doping and oxygen diffusion in zirconia: A combined atomistic simulation and molecular dynamics study, J. Mater. Chem., 8, 2299, 10.1039/a803917h

Kilo, 2003, Oxygen diffusion in yttria stabilised zirconia — experimental results and molecular dynamics calculations, Phys. Chem. Chem. Phys., 5, 2219, 10.1039/B300151M

Kilo, 2003, Computer modelling of ion migration in zirconia, Philos. Mag., 83, 3309, 10.1080/14786430310001605001

Ol’khovic, 1995, Band structure of cubic ZrO2 containing oxygen vacancies and calcium ions, J. Phys.: Condens. Matter, 7, 1273, 10.1088/0953-8984/7/7/008

Aldebert, 1985, Structure and ionic mobility of zirconia at high-temperature, J. Amer. Ceram. Soc., 68, 34, 10.1111/j.1151-2916.1985.tb15247.x

Wertz, 1961, Electron spin resonance studies of radiation effects in inorganic solids, Discuss. Faraday Soc., 31, 140, 10.1039/df9613100140

Jomard, 1999, First-principles calculations to describe zirconia pseudopolymorphs, Phys. Rev. B, 59, 4044, 10.1103/PhysRevB.59.4044

Hedin, 1969, vol. 23, 1

Hybertsen, 1986, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B, 34, 5390, 10.1103/PhysRevB.34.5390

Robertson, 2006, Band gaps and defect levels in functional oxides, Thin Solid Films, 1, 10.1016/j.tsf.2005.08.175

Giordano, 2004, Nucleation of Pd dimers at defect sites of the MgO(100) surface, Phys. Rev. Lett., 92, 096105, 10.1103/PhysRevLett.92.096105

Cox, 1992

Weckhuysen, 2003, Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis, Catal. Today, 78, 25, 10.1016/S0920-5861(02)00323-1

Kenny, 1966, Optical absorption coefficient of vanadium pentoxide single crystals, J. Phys. Chem. Solids, 27, 1237, 10.1016/0022-3697(66)90007-2

Bodó, 1967, Optical absorption near the absorption edge in V 2O5 single crystals, Phys. Status Solidi, 20, K45, 10.1002/pssb.19670200153

Enjalbert, 1986, A refinement of the structure of V 2O5, Acta Cryst., C42, 1467

Mars, 1954, Oxidation carried out by means of vanadium oxide catalysts, Spec. Suppl. Chem. Eng. Sci., 3, 41, 10.1016/S0009-2509(54)80005-4

Chen, 1999, Isotopic tracer and kinetic studies of oxidative dehydrogenation pathways on vanadium oxide catalysts, J. Catal., 186, 325, 10.1006/jcat.1999.2510

Chen, 2000, Kinetic isotopic effects in oxidative dehydrogenation of propane on vanadium oxide catalysts, J. Catal., 192, 197, 10.1006/jcat.2000.2832

Fiermans, 1980, Single crystal V 2O5 and lower oxides a survey of their electronic, optical, structural and surface properties, Phys. Status Solidi A, 59, 485, 10.1002/pssa.2210590211

Zhang, 1994, Surface electronic structure of V 2O5(001): Defect states and chemisorption, Surf. Sci., 321, 133, 10.1016/0039-6028(94)90034-5

Tepper, 2002, Adsorption of molecular and atomic hydrogen on vacuum cleaved V 2O5(001), Surf. Sci., 64, 10.1016/S0039-6028(01)01607-7

Wu, 2004, Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface, Appl. Surf. Sci., 236, 473, 10.1016/j.apsusc.2004.05.112

Fiermans, 1968, LEED study of the vanadium pentoxide (010) surface, Surf. Sci., 9, 187, 10.1016/0039-6028(68)90172-6

Fiermans, 1969, Particular LEED features on the V 2O5(010) surface and their relation to the LEED beam induced transition V 2O5→V 6O13, Surf. Sci., 18, 317, 10.1016/0039-6028(69)90174-5

Colpaert, 1973, Thermal and low energy electron bombardment induced oxygen loss of V 2O5 single crystals: Transition into V 6O13, Surf. Sci., 36, 513, 10.1016/0039-6028(73)90399-3

Goschke, 1996, Tip induced changes of atomic scale images of the vanadium pentoxide surface, Surf. Sci., 348, 305, 10.1016/0039-6028(95)00998-1

Devriendt, 1999, Thermal reduction of vanadium pentoxide: An XPD study, Surf. Sci., 734, 10.1016/S0039-6028(99)00171-5

R.-P. Blum, C. Hucho, H. Niehus, S. Shaikhutdinov, H.-J. Freund, Surface metal–insulator transitions of a vanadium pentoxide (001) single crystal, unpublished

Smith, 1995, The observation of oxygen disorder on the V 2O5(001) surface using scanning tunneling microscopy, Surf. Sci., 322, 293, 10.1016/0039-6028(95)90038-1

K. Hermann, private communication

Kofstad, 1972

Sahibzada, 1997, Development of solid oxide fuel cells based on a Ce(Gd)O2−x electrolyte film for intermediate temperature operation ceria-based solid electrolytes, Catal. Today, 38, 459, 10.1016/S0920-5861(97)00055-2

Hibino, 2000, A low-operating-temperature solid oxide fuel cell in hydrocarbon–air mixtures, Science, 288, 2031, 10.1126/science.288.5473.2031

Park, 2000, Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature, 404, 265, 10.1038/35005040

Fu, 2003, Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts, Sience, 301, 935, 10.1126/science.1085721

Deluga, 2004, Renewable hydrogen from ethanol by autothermal reforming, Science, 303, 993, 10.1126/science.1093045

Eyring, 1979, vol. 3

Gerward, 2005, Bulk modulus of CeO2 and PrO2—An experimental and theoretical study, J. Alloys Comp., 400, 56, 10.1016/j.jallcom.2005.04.008

Skorodumova, 2004, Surface properties of CeO2 from first principles, Phys. Rev. B, 69, 075401, 10.1103/PhysRevB.69.075401

Jiang, 2005, Density functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities, J. Chem. Phys., 123, 064701, 10.1063/1.1949189

Nörenberg, 1999, Defect formation on CeO2(111) surfaces after annealing studied by STM, Surf. Sci., 424, L352, 10.1016/S0039-6028(99)00212-5

Siokou, 1999, Interaction of methanol with well-defined ceria surfaces: Reflection/absorption infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption study, J. Phys. Chem. B, 103, 6984, 10.1021/jp991127h

Norenberg, 1998, Surface structure of CeO2(111) studied by low current STM and electron diffraction, Surf. Sci., 404, 734, 10.1016/S0039-6028(97)00999-0

Mullins, 1999, Ordered cerium oxide thin films grown on Ru(0001) and Ni(111), Surf. Sci., 429, 186, 10.1016/S0039-6028(99)00369-6

Namai, 2003, Atom-resolved noncontact atomic force microscopic observations of CeO2(111) surfaces with different oxidation states: Surface structure and behavior of surface oxygen atoms, J. Phys. Chem. B, 107, 11666, 10.1021/jp030142q

Namai, 2003, Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2(111) surfaces, Catal. Today, 85, 79, 10.1016/S0920-5861(03)00377-8

Nörenberg, 1999, The surface structure of CeO2(110) single crystals studied by STM and RHEED, Surf. Sci., 433, 127, 10.1016/S0039-6028(99)00070-9

Nörenberg, 2001, The surface structure of CeO2(001) single crystals studied by elevated temperature STM, Surf. Sci., 477, 17, 10.1016/S0039-6028(01)00700-2

Herman, 1999, Surface structure determination of CeO2(001) by angle-resolved mass spectroscopy of recoiled ions, Phys. Rev. B, 59, 14899, 10.1103/PhysRevB.59.14899

Koellig, 1983, The electronic structure of CeO2 and PrO2, Solid State Commun., 47, 227, 10.1016/0038-1098(83)90550-1

Wuilloud, 1984, Spectroscopic evidence for localized and extended f-symmetry states in CeO2, Phys. Rev. Lett., 53, 202, 10.1103/PhysRevLett.53.202

Wuilloud, 1985, Spectroscopic study of localized and extended f-symmetry states in CeO2, CeN and CeSi2, J. Magn. Magn. Mater., 47–48, 197, 10.1016/0304-8853(85)90392-0

Pfau, 1994, The electronic structure of stoichiometric and reduced CeO2 surfaces: An XPS, UPS and HREELS study, Surf. Sci., 321, 71, 10.1016/0039-6028(94)90027-2

Hanyu, 1985, On the valence states of cerium in CeO2, Solid State Commun., 56, 381, 10.1016/0038-1098(85)90407-7

Dexpert, 1987, X-ray absorption studies of CeO2, PrO2, and TbO2. ii. rare-earth valence state by liii absorption edges, Phys. Rev. B, 36, 1750, 10.1103/PhysRevB.36.1750

Karnatak, 1987, X-ray absorption studies of CeO2, PrO2, and TbO2. I. Manifestation of localized and extended f states in the 3d absorption spectra, Phys. Rev. B, 36, 1745, 10.1103/PhysRevB.36.1745

Marabelli, 1987, Covalent insulator CeO2: Optical reflectivity measurements, Phys. Rev. B, 36, 1238, 10.1103/PhysRevB.36.1238

Wachter, 2001, Empty f-states, Kondo insulators—or what?, Physica B, 300, 105, 10.1016/S0921-4526(01)00575-0

Fujimori, 1983, Mixed-valent ground state of CeO2, Phys. Rev. B, 28, 2281, 10.1103/PhysRevB.28.2281

Allen, 1985, Valence fluctuations in narrow band oxides, J. Magn. Magn. Mater., 47–48, 168, 10.1016/0304-8853(85)90388-9

Matsumoto, 1994, Resonant photoemission study of CeO2, Phys. Rev. B, 50, 11340, 10.1103/PhysRevB.50.11340

Burroughs, 1976, Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium, J. Chem. Soc., Dalton Trans., 1686, 10.1039/dt9760001686

Fujimori, 1984, Comment on “spectroscopic evidence for localized and extended f-symmetry states in CeO2”, Phys. Rev. Lett., 53, 2518, 10.1103/PhysRevLett.53.2518

Yoshida, 2001, Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement, Solid State Ion., 140, 191, 10.1016/S0167-2738(01)00854-2

Inaba, 1996, Ceria-based solid electrolytes, Solid State Ion., 83, 1, 10.1016/0167-2738(95)00229-4

Guo, 2005, Nonlinear electrical properties of grain boundaries in oxygen ion conductors: Acceptor-doped ceria, Electrochem. Solid State Lett., 8, J1, 10.1149/1.1830393

Tuller, 1977, Small polaron electron transport in reduced CeO2 single crystals, J. Phys. Chem. Solids, 38, 859, 10.1016/0022-3697(77)90124-X

Norenberg, 1997, Defect structure of nonstoichiometric CeO2(111) surfaces studied by scanning tunneling microscopy, Phys. Rev. Lett., 79, 4222, 10.1103/PhysRevLett.79.4222

Mullins, 1998, Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces, Surf. Sci., 409, 307, 10.1016/S0039-6028(98)00257-X

Henderson, 2003, Redox properties of water on the oxidized and reduced surfaces of CeO2, Surf. Sci., 526, 1, 10.1016/S0039-6028(02)02657-2

Panhans, 1993, A thermodynamic and electrical conductivity study of nonstoichiometric cerium dioxide, Solid State Ion., 60, 279, 10.1016/0167-2738(93)90006-O

Binet, 1994, A spectroscopic characterization of the reduction of ceria from electronic transitions of intrinsic point defects, J. Phys. Chem., 98, 6392, 10.1021/j100076a025

Perrichon, 1994, Reduction of cerias with different textures by hydrogen and their reoxidation by oxygen, J. Chem. Soc. Faraday Trans., 90, 773, 10.1039/FT9949000773

Ricken, 1984, Specific heat and phase diagram of nonstoichiometric ceria (CeO2−x), J. Solid State Chem., 54, 89, 10.1016/0022-4596(84)90135-X

Kümmerle, 1999, The structures of C–Ce2O3+δ, Ce7O12, and Ce11O20, J. Solid State Chem., 147, 485, 10.1006/jssc.1999.8403

Zhang, 1993, Binary higher oxides of the rare-earths, J. Alloys Comp., 192, 57, 10.1016/0925-8388(93)90186-Q

Romeo, 1993, XPS study of the reduction of cerium dioxide, Surf. Interface Anal., 20, 508, 10.1002/sia.740200604

Overbury, 1999, Chemisorption and reaction of NO and N2O on oxidized and reduced ceria surfaces studied by soft X-Ray photoemission spectroscopy and desorption spectroscopy, J. Catal., 186, 296, 10.1006/jcat.1999.2577

Berner, 2000, Ultrathin ordered CeO2 overlayers on Pt(111): Interaction with NO2, NO, H2O and CO, Surf. Sci., 467, 201, 10.1016/S0039-6028(00)00770-6

Soria, 1995, Spectroscopic study of oxygen adsorption as a method to study surface defects on CeO2, J. Chem. Soc. Faraday Trans., 91, 1669, 10.1039/FT9959101669

Esch, 2005, Electron localization determines defect formaton on ceria substrates, Science, 309, 752, 10.1126/science.1111568

Kresse, 2005, Comment on “Taming multiple valency with density functionals: A case study of defective ceria”, Phys. Rev. B, 72, 237101, 10.1103/PhysRevB.72.237101

Baroni

Marzari, 1997, Maximally localized generalized wannier functions for composite energy bands, Phys. Rev. B, 56, 12847, 10.1103/PhysRevB.56.12847

Pavarini, 2004, Mott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites, Phys. Rev. Lett., 92, 176403, 10.1103/PhysRevLett.92.176403

Anisimov, 2005, Full orbital calculation scheme for materials with strongly correlated electrons, Phys. Rev. B, 71, 125119, 10.1103/PhysRevB.71.125119

Loschen, 2007, First principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U-parameter, Phys. Rev. B, 75, 035115, 10.1103/PhysRevB.75.035115

Herschend, 2004, A combined molecular dynamics plus quantum mechanics method for investigation of dynamic effects on local surface structures, J. Chem. Phys., 120, 4939, 10.1063/1.1635802

Feng, 2004, Electronic structure of MnO and CoO from the B3LYP hybrid density functional method, Phys. Rev. B, 69, 155107, 10.1103/PhysRevB.69.155107

Feng, 2004, Magnetic coupling constants from a hybrid density functional with 35% Hartree–Fock exchange, Phys. Rev. B, 70, 092402, 10.1103/PhysRevB.70.092402

Mackrodt, 2004, Hybrid density functional theory study of vanadium monoxide, Phys. Rev. B, 69, 115119, 10.1103/PhysRevB.69.115119

Franchini, 2005, Density functional theory study of MnO by a hybrid functional approach, Phys. Rev. B, 72, 045132, 10.1103/PhysRevB.72.045132

Uddin, 2005, Density functional theory of bulk platinum monoxide, Phys. Rev. B, 71, 155112, 10.1103/PhysRevB.71.155112

Prokofiev, 1996, Periodicity in the band gap variation of Ln2X3 (X=O, S, Se) in the lanthanide series, J. Alloys Comp., 242, 41, 10.1016/0925-8388(96)02293-1

Petit, 2005, First-principles study of rare-earth oxides, Phys. Rev. B, 72, 205118, 10.1103/PhysRevB.72.205118

Andersen, 1975, Linear methods in band theory, Phys. Rev. B, 12, 3060, 10.1103/PhysRevB.12.3060

Skriver, 1984

Skorodumova, 2001, Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles, Phys. Rev. B, 64, 115108, 10.1103/PhysRevB.64.115108

Chiang, 1997, Defect thermodynamics and electrical properties of nanocrystalline oxides: Pure and doped CeO2, Nanostruct. Mater., 9, 633, 10.1016/S0965-9773(97)00142-6

Perdew, 1998

Filippetti, 2003, Self-interaction-corrected pseudopotential scheme for magnetic and strongly-correlated systems, Phys. Rev. B, 67, 125109, 10.1103/PhysRevB.67.125109

K. Tsemekhman, E.J. Bylaska, E.C. Brown, H. Jónsson, On the orbital based estimate of the self-interaction correction to density functional theory: Less is better, unpublished

Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953

Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758