Oxygen uptake, selectivity and reversibility of Tb–CeO2 mixed oxides for air separation
Tóm tắt
A series of Tb–CeO2 mixed oxides were investigated as novel oxygen sorbents. The relationship between %Tb content-oxygen uptake, alongside the selectivity and reversibility of these materials, was determined via chemisorption (400, 500 and 600 °C) and supporting thermogravimetric studies at 500 and 600 °C. Oxygen chemisorption experiments conducted at 600 °C showed higher uptakes were achieved by incorporating more Tb into the CeO2 crystal lattice. The uptake of 40 mol% Tb–CeO2 was 121 μmol g−1 and for 10 mol% Tb–CeO2 the uptake was 34 μmol g−1. Increasing the analysis temperature for each material resulted in an increase in uptake as more oxygen was able to be removed. All materials exhibited good reversibility and cyclic stability during alternating N2 and air atmospheres at 600 °C. High O2/N2 selectivity was also demonstrated as no detectible uptake was observed at 600 °C using N2 as the adsorbate. The data suggests that these materials may have applications in air trace gas removal or as membranes for air separation applications.
Tài liệu tham khảo
Abel, J., Lamirand-Majimel, M., Majimel, J., Belliere-Baca, V., Harle, V., Andre, G., Prestipino, C., Figueroa, S., Durand, E., Demourgues, A.: Oxygen non-stoichiometry phenomena in Pr1–xZrxO2–y compounds (0.02 < x < 0.5). Dalton Trans. 43, 15183–15191 (2014)
Badani, M.V., Vannice, M.A.: Effects of cesium and chlorine on oxygen adsorption on promoted Ag/α–Al2O3 catalysts. Appl. Catal. A. 204, 129–142 (2000)
Balaguer, M., García-Fayos, J., Solís, C., Serra, J.M.: Fast oxygen separation through SO2− and CO2-stable dual-phase membrane based on NiFe2O4–Ce0.8Tb0.2O2–δ. Chem. Mater. 25, 4986–4993 (2013)
Balaguer, M., Solís, C., Serra, J.M.: Study of the transport properties of the mixed ionic electronic conductor Ce1–xTbxO2–δ + Co (x = 0. 1, 0.2) and evaluation as oxygen-transport membrane. Chem. Mater. 23, 2333–2343 (2011)
Bernal, S., Blanco, G., Cauqui, M.A., Martín, A., Pintado, J.M., Galtayries, A., Sporken, R.: Oxygen buffering capacity (OBC) of praseodymium-modified CeO2: influence of the Pr distribution in the ceria host lattice. Surf. Interface Anal. 30, 85–89 (2000)
Bernal, S., Blanco, G., Delgado, J.J., Pintado, J.M., Rodríguez-Izquierdo, J.M.: Influence of the noble metal on the properties as oxygen exchanger of Rh/LnOx systems (Ln: Ce, Tb): Application of the oxygen buffering capacity (OBC) technique. J. Alloys Compd. 344, 347–351 (2002)
Bloch, E.D., Murray, L.J., Queen, W.L., Chavan, S., Maximoff, S.N., Bigi, J.P., Krishna, R., Peterson, V.K., Grandjean, F., Long, G.J., Smit, B., Bordiga, S., Brown, C.M., Long, J.R.: Selective binding of O2 over N2 in a redox–active metal–organic framework with open iron(II) coordination sites. J. Am. Chem. Soc. 133, 14814–14822 (2011)
Botu, V., Ramprasad, R., Mhadeshwar, A.B.: Ceria in an oxygen environment: Surface phase equilibria and its descriptors. Surf. Sci. 619, 49–58 (2014)
Brin, L.Q., Brin, A.: Apparatus for Obtaining Oxygen from Air. US Patent 359424
Burnham, D.A., Eyring, L., Kordis, J.: High-temperature X-ray diffraction studies of the terbium oxide-oxygen and mixed cerium terbium oxide-oxygen systems. J. Phys. Chem. 72, 4424–4431 (1968)
Chen, S.Y., Chen, R.J., Lee, W., Dong, C.L., Gloter, A.: Spectromicroscopic evidence of interstitial and substitutional dopants in association with oxygen vacancies in Sm-doped ceria nanoparticles. Phys. Chem. Chem. Phys. 16, 3274–3281 (2014)
Chen, G., Xu, Q., Yang, Y., Li, C., Huang, T., Sun, G., Zhang, S., Ma, D., Li, X.: Facile and mild strategy to construct mesoporous CeO2–CuO nanorods with enhanced catalytic activity toward CO oxidation. ACS Appl. Mater. Interfaces 7, 23538–23544 (2015)
Coduri, M., Scavini, M., Allieta, M., Brunelli, M., Ferrero, C.: Defect structure of Y-doped ceria on different length scales. Chem. Mater. 25, 4278–4289 (2013)
D’Angelo, A.M., Liu, A.C.Y., Chaffee, A.L.: Oxygen uptake of Tb–CeO2: Analysis of Ce3+ and oxygen vacancies. J. Phys. Chem. C. 120, 14382–14389 (2016a)
D’Angelo, A.M., Webster, N.A.S., Chaffee, A.L.: Vacancy generation and oxygen uptake in Cu doped Pr–CeO2 mixed oxides using neutron and in-situ X-ray diffraction. Inorg. Chem. doi:10.1021/acs.inorgchem.6b01499 (2016b)
Dole, H.A.E., Baranova, E.A.: Ethylene oxidation in an oxygen-deficient environment: Why ceria is an active support? Chem. Cat. Chem. 8, 1977–1986 (2016)
Duchoň, T., Dvořák, F., Aulická, M., Stetsovych, V., Vorokhta, M., Mazur, D., Veltruská, K., Skála, T., Mysliveček, J., Matolínová, I., Matolín, V.: Ordered phases of reduced ceria as epitaxial films on Cu(111). J. Phys. Chem. C. 118, 357–365 (2014)
Fahim, M.A., Ford, J.D.: Energy storage using the BaO2-BaO reaction cycle. Chem. Eng. J. 27, 21–28 (1983)
Furutachi, H., Fujinami, S., Suzuki, M., Okawa, H.: Oxygenation of heterodinuclear di(m-phenoxo) Co(II)M(II) (M = Mn, Fe or Co) complexes having a “Co(salen)” entity in a macrocyclic framework. J. Chem. Soc. Dalton Trans. 2197–2204 (1999)
Gu, Z., Li, K., Wang, H., Qing, S., Zhu, X., Wei, Y., Cheng, X., Yu, H., Cao, Y.: Bulk monolithic Ce–Zr–Fe–O/Al2O3 oxygen carriers for a fixed bed scheme of the chemical looping combustion: Reactivity of oxygen carrier. Appl. Energy. 163, 19–31 (2016)
Guil, J.M., Masiá, A.P., Paniego, A.R., Menayo, J.M.T.: Energetics of H2 and O2 adsorption on Ir/γ-Al2O3 and Ir/SiO2 catalysts. Dependence on support and on metal particle size. Thermochim. Acta 312, 115–124 (1998).
Guo, P., Dutta, D., Wong-Foy, A.G., Gidley, D.W., Matzger, A.J.: Water sensitivity in Zn4O-based MOFs is structure and history dependent. J. Am. Chem. Soc. 137, 2651–2657 (2015)
ICDD. PDF-2 2010 (Database) (2010)
Ikeda, H., Nikata, S., Hirakawa, E., Tsuchida, A., Miura, N.: Oxygen sorption/desorption behavior and crystal structural change for SrFeO3–δ. Chem. Eng. Sci. 147, 166–172 (2016)
Islam, Q.A., Raja, M.W., Basu, R.N.: LaxSr1–xCo0.35Bi0.2Fe0.45O3–δ (x = 0.5 to 0.8): A new series of oxygen separation membrane. Int. J. Hydrogen Energy. 41, 4682–4689 (2016)
Jeamjumnunja, K., Gong, W., Makarenko, T., Jacobson, A.J.: A determination of the oxygen non-stoichiometry of the oxygen storage materials LnBaMn2O5 + δ (Ln = Gd, Pr). J. Solid State Chem. 239, 36–45 (2016)
Jensen, W.B.: The origin of the Brin process for the manufacture of oxygen. J. Chem. Educ. 86, 1266 (2009)
Kehoe, A.B., Scanlon, D.O., Watson, G.W.: Role of lattice distortions in the oxygen storage capacity of divalently doped CeO2. Chem. Mater. 23, 4464–4468 (2011)
Kunze, C., Spliethoff, H.: Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants. Appl. Energy 94, 109–116 (2012)
Lee, S.J., Jung, J.H., Moon, J.H., Jee, J.G., Lee, C.H.: Parametric study of the three-bed pressure–vacuum swing adsorption process for high purity O2 generation from ambient air. Ind. Eng. Chem. Res. 46, 3720–3728 (2007)
Li, J., Zhang, Z., Tian, Z., Zhou, X., Zheng, Z., Ma, Y., Qu, Y.: Low pressure induced porous nanorods of ceria with high reducibility and large oxygen storage capacity: synthesis and catalytic applications. J. Mater. Chem. A. 2, 16459–16466 (2014)
Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, 4 th ed. Particle Technology Series. Kluwer Academic Publishers, The Netherlands (2004)
Mamontov, E., Egami, T., Brezny, R., Koranne, M., Tyagi, S.: Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J. Phys. Chem. B. 104, 11110–11116 (2000)
Masunaga, T., Izumi, J., Miura, N.: Relationship between oxygen sorption properties and crystal structure of Fe-based oxides with double perovskite composition. Chem. Eng. Sci. 84, 108–112 (2012)
Meledina, M., Turner, S., Galvita, V.V., Poelman, H., Marin, G.B., Van, T. en deloo, G.: Local environment of Fe dopants in nanoscale Fe:CeO2–x oxygen storage material. Nanoscale. 7, 3196–3204 (2015)
Mofarahi, M., Towfighi, J., Fathi, L.: Oxygen separation from air by four-bed pressure swing adsorption. Ind. Eng. Chem. Res. 48, 5439–5444 (2009)
Möller, M., Urban, S., Cop, P., Weller, T., Ellinghaus, R., Kleine-Boymann, M., Fiedler, C., Sann, J., Janek, J., Chen, L., Klar, P.J., Hofmann, D.M., Philipps, J., Dolcet, P., Gross, S., Over, H., Smarsly, B.M.: Synthesis and physicochemical characterization of Ce1–xGdxO2–δ: A case study on the impact of the oxygen storage capacity on the HCl oxidation reaction. Chem. Cat. Chem. 7, 3738–3747 (2015)
Mullhaupt, J.T.: Process and Composition for Separation of Oxygen from Air using Pr–Ce as the Carrier. US Patent US Patent Number 3980763
Mullhaupt, J.T., Stern, S.A.: Process and Composition for Separation of Oxygen from Air using Strontium Oxide-Peroxide as the Carrier. US Patent Number 3579292 A
Mullins, D.R., Albrecht, P.M., Chen, T.-L., Calaza, F.C., Biegalski, M.D., Christen, H.M., Overbury, S.H.: Water dissociation on CeO2(100) and CeO2(111) thin films. J. Phys. Chem. C. 116, 19419–19428 (2012)
Ozawa, M., Hattori, M., Yamaguchi, T.: Thermal stability of ceria catalyst on alumina and its surface oxygen storage capacity. J. Alloys Compd. 451, 621–623 (2008)
Park, J.H., Cho, Y.S., Yi, K.B., Han, S.S., Cho, S.H.: Adsorption and desorption characteristics of barium oxide at high temperature. Appl. Surf. Sci. 256, 5528–5532 (2010)
Pelovsky, Y., Raynova, V., Gruncharov, I., Dombalov, I.: Thermal stability of the system BaO-BaO2. J. Therm. Anal. Calorim. 37, 841–847 (1991)
Sen, S., Edwards, T., Kim, S.K., Kim, S.: Investigation of the potential energy landscape for vacancy dynamics in Sc-doped CeO2. Chem. Mater. 26, 1918–1924 (2014)
Skorek-Osikowska, A., Bartela, Ł., Kotowicz, J.: A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units. Energy Convers. Manage. 92, 421–430 (2015)
Southon, P.D., Price, D.J., Nielsen, P.K., McKenzie, C.J., Kepert, C.J.: Reversible and selective O2 chemisorption in a porous metal–organic host material. J. Am. Chem. Soc. 133, 10885–10891 (2011)
Taniguchi, T., Watanabe, T., Sakamoto, N., Matsushita, N., Yoshimura, M.: Aqueous route to size-controlled and doped organophilic ceria nanocrystals. Cryst. Growth Des. 8, 3725–3730 (2008)
Thimsen, D., Wheeldon, J., Dillon, D.: Economic comparison of oxy-coal carbon dioxide (CO2) capture and storage (CCS) with pre- and post-combustion CCS. In: Zheng, L.. (ed.) Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture. Woodhead Publishing, Cambridge (2011)
Torbrügge, S., Cranney, M., Reichling, M.: Morphology of step structures on CeO2(111). Appl. Phys. Lett. 93, 073112 (2008)
Tumuluri, U., Rother, G., Wu, Z.: Fundamental understanding of the interaction of acid gases with CeO2: From surface science to practical catalysis. Ind. Eng. Chem. Res. 55, 3909–3919 (2016)
Wang, H., Werth, S., Schiestel, T., Caro, J.: Perovskite hollow-fiber membranes for the production of oxygen-enriched air. Angew. Chem. Int. Ed. 44, 6906–6909 (2005)
Wu, L., Dey, S., Gong, M., Liu, F., Castro, R.H.R: Surface segregation on manganese doped ceria nanoparticles and relationship with nanostability. J. Phys. Chem. C. 118, 30187–30196 (2014)
Xiao, D.J., Gonzalez, M.I., Darago, L.E., Vogiatzis, K.D., Haldoupis, E., Gagliardi, L., Long, J.R.: Selective, tunable O2 binding in cobalt(II)–triazolate/pyrazolate metal–organic frameworks. J. Am. Chem. Soc. 138, 7161–7170 (2016)
Ye, F., Mori, T., Ou, D.R., Zou, J., Auchterlonie, G., Drennan, J.: Compositional and valent state inhomogeneities and ordering of oxygen vacancies in terbium-doped ceria. J. Appl. Phys. 101, 113528 (2007)