Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Carbon giàu oxy từ các polyme liên kết chéo siêu cao được sửa đổi carbonyl để bắt giữ CO2 hiệu quả
Tóm tắt
Một loạt các polyme liên kết chéo siêu cao (HCPs) được sửa đổi carbonyl với độ xốp khác nhau đã được chế tạo và chúng đã được carbon hóa để sản xuất các carbon xốp giàu oxy. Kết quả cho thấy các loại carbon này có diện tích mặt cao theo phương pháp Brunauer-Emmett-Teller (BET) từ 440–1769 m2/g và khả năng vi xốp nổi bật từ 72–87%, hàm lượng oxy rất cao sau quá trình carbon hóa với hàm lượng oxy đạt 20.7–29.2 wt%. Sự thu nhận CO2 của PDVC-700-1 là cao nhất với giá trị 303 mg/g ở 273 K và 1.0 bar, trong khi PDV-pc có độ chọn lọc CO2/N2 cao nhất là 46.8. Đặc biệt, quá trình hấp phụ CO2 có tương quan tuyến tính với thể tích vi xốp siêu nhỏ (d < 1.0 nm) với hệ số tương quan là 0.9935 (273 K, 1.0 bar) và hàm lượng oxy cũng có vai trò trong hấp phụ CO2. Những loại carbon xốp này có nhiệt lượng hấp phụ trung bình từ 28.5–34.9 kJ/mol với hiệu suất desorption và tái sử dụng xuất sắc.
Từ khóa
#carbon giàu oxy #polyme liên kết chéo siêu cao #sửa đổi carbonyl #thuốc thử CO2 #hấp phụTài liệu tham khảo
Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5:7281–7305
Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39:426–443
Younas M, Sohail M, Leong LK, Bashir MJ, Sumathi S (2016) Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int J Environ Sci Technol 13:1839–1860
Drage TC, Snape CE, Stevens LA, Wood J, Wang JW, Cooper AI, Dawson R, Guo X, Satterley C, Irons R (2012) Materials challenges for the development of solid sorbents for post-combustion carbon capture. J Mater Chem 22:2815–2823
Yu M, Wang XY, Yang X, Zhao Y, Jiang JX (2015) Conjugated microporous copolymer networks with enhanced gas adsorption. Polym Chem 6:3217–3223
Patel HA, Karadas F, Byun J, Park J, Deniz E, Canlier A, Jung Y, Atilhan M, Yavuz C (2013) Highly stable nanoporous sulfur-bridged covalent organic polymers for carbon dioxide removal. Adv Funct Mater 23:2270–2276
Wang Q, Tay HH, Zhong Z, Luo J, Borgna A (2012) Synthesis of high-temperature CO2 adsorbents from organo-layered double hydroxides with markedly improved CO2 capture capacity. Energy Environ Sci 5:7526–7530
Song X, Zhang Y, Chang C (2012) Novel method for preparing activated carbons with high specific surface area from rice husk. Ind Eng Chem Res 51:15075–15081
Alabadi A, Razzaque S, Yang YW, Chen S, Tan B (2015) Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chem Eng J 281:606–612
Gao H, Ding L, Li W, Ma G, Bai H, Li L (2016) Hyper-cross-linked organic microporous polymers based on alternating copolymerization of bismaleimide. ACS Macro Lett 5:377–381
Li B, Gong R, Luo Y, Tan B (2011) Tailoring the pore size of hypercrosslinked polymers. Soft Matter 7:10910–10916
Kim S, Seo M (2018) Control of porosity in hierarchically porous polymers derived from hyper-crosslinked block polymer precursors. Polym Chem 56:900–913
Castaldo R, Avolio R, Cocca M, Gentile G, Errico ME, Avella M, Carfagna C, Ambrogi V (2017) Synthesis and adsorption study of hypercrosslinked styrene-based nanocomposites containing multi-walled carbon nanotubes. RSC Adv 7:6865–6874
Hou L, Wang Z, Xu J, Chen Z (2019) Poly (arylene ether ketone) containing amino and fluorenyl groups for highly selective of gas separation. J Polym Res 26:243–252
Li ZH, Wu DC, Liang YR, Fu RW, Matyjaszewski K (2014) Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. J Am Chem Soc 136:4805–4808
EL-Mahdy AFM, Hung YH, Mansoure TH, Yu HH, Hsu YS, Wu KCW, Kuo SW (2019) Synthesis of [3+3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage. J Tai-wan Inst Chem E 103:199–208
Shao LS, Sang YF, Huang JH, Liu Y-N (2018) Triazine-based hyper-cross-linked polymers with inorganic-organic hybrid framework derived porous carbons for CO2 capture. Chem Eng J 353:1–14
Presser V, McDonough J, Yeon S, Gogotsi Y (2011) Effect of pore size on carbon dioxide sorption by carbide derived darbon. Energy Environ Sci 4:3059–3066
Hu X, Radosz M, Cychosz KA, Thommes M (2011) CO2-Filling capacity and selectivity of carbon nanopores: synthesis, texture,and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ Sci Technol 45:7068–7074
Wang C, Yang L, Chang G (2017) Microporous coordination polymer with secondary amine functional groups for CO2 uptake and selectivity. J Polym Res 24:219–225
Wahby A, Ramos-Fernandez JM (2010) High-surface-area carbon molecular sieves for selective CO2 adsorption. ChemSusChem 3:974–981
Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derks D, Uyama H (2012) Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem Commun 48:10283–10285
J.W. To, He JJ, Mei JG, Haghpanah R, Chen Z, Kurosawa T, Chen SC, Wilcox J, Bao ZN (2016) Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J Am Chem Soc 138:1001–1009
Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1290
Thommes M, Kaneko K, Neimark A (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069
Pan L, Chen Q, Zhu JH, Yu JG, He YJ, Han BH (2015) Hypercrosslinked porous polycarbazoles via one-step oxidative coupling reaction and Friedel-crafts alkylation. Polym Chem 6:2478–2487
Hu XM, Chen Q, Zhao YC, Laursen BW, Han BH (2014) Straightforward synthesis of a triazine-based porous carbon with high gas-uptake capacities. J Mater Chem A 2:14201–14208
Zhang C, Yang X, Zhao Y, Wang XY, Yu M, Jiang JX (2015) Bifunctionalized conjugated microporous polymers for carbon dioxide capture. Polymer 61:36–41
Sun C, Wang P, Wang H, Han B (2016) All-thiophene-based conjugated porous organic polymers. Polym Chem 7:5031–5038
Islamoglu T, Kim T, Kahveci Z, El-Kadri OM, El-Kaderi HM (2016) Systematic postsynthetic modification of nanoporous organic frameworks for enhanced CO2 capture from flue gas and landfill gas. J Phys Chem C 120:2592–2599
Gu S, He J, Zhu YL, Wang Z, Chen D, Yu GP, Tao K (2016) Facile carbonization of microporous organic polymers into hierarchically porous carbons targeted for effective CO2 uptake at low pressures. ACS Appl Mater Interfaces 8:18383–18392
Kou J, Sun LB (2016) Nitrogen-doped porous carbons derived from carbonization of a nitrogen-containing polymer: efficient adsorbents for selective CO2 capture. Ind Eng Chem Res 55:10916–10925
Zhu XL, Wang PY, Peng C, Yang J, Yan XB (2014) Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chin Chem Lett 25:929–932
Wickramaratne NP, Jaroniec M (2013) Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J Mater Chem A 1:112–116
Ashourirad B, Arab P, Verlander A, El-Kaderi HM (2016) From azo-linked polymers to microporous heteroatom-doped carbons: tailored chemical and textural properties for gas separation. ACS Appl Mater Interfaces 8:8491–8501
Liu L, Xie ZH, Deng QF, Hou XX, Yuan ZY (2017) One-pot carbonization enrichment of nitrogen in microporous carbon spheres for efficient CO2 capture. J Mater Chem A 5:418–425
Zhang T, Huang JH (2017) Tunable synthesis of the polar modified hyper-cross-linked resins and application to the adsorption. J Colloid Interf Sci 505:383–391
Shao LS, Huang JH (2017) N-vinylimidazole-modified hyper-cross-linked resins with controllable porosity and polarity and their efficient adsorption towards p-ni-trophenol from aqueous solution. J. Colloid Interf Sci. 507:42–50
Sui ZY, Meng YN, Xiao PW, Zhao ZQ, Wei ZX, Han BH (2015) Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl Mater Interfaces 7:1431–1438
Cai JJ, Qi JB, Yang CP, Zhao XB (2014) Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH 4 and H 2 storage and CO2 capture. ACS Appl Mater Interfaces 6:3703–3711
Wang YY, Xiong SH, Li FF, Tao J, Tang JT, Liu C, Yuan KY, Pan CY, Yu GP, Liu YN (2019) Flexible Ketone-bridged organic porous nanospheres: promoting porosity utilizing intramolecular hydrogen-bonding effects for effective gas separation. Chem Eng J 358:1383–1389