Oxygen plasma modification of carbon fiber rovings for enhanced interaction toward mineral-based impregnation materials and concrete matrices

Construction and Building Materials - Tập 273 - Trang 121950 - 2021
Huanyu Li1,2, Marco Liebscher1, Albert Michel1, Antje Quade3, Rüdiger Foest3, Viktor Mechtcherine1
1Technische Universität Dresden, Institiute of Construction Materials, Dresden, Germany
2School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
3Leibniz-Institut für Plasmaforschung und Technologie, Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany

Tài liệu tham khảo

Schneider, 2019, Mineral-impregnated carbon fibre reinforcement for high temperature resistance of thin-walled concrete structures, Cem. Concr. Compos., 97, 68, 10.1016/j.cemconcomp.2018.12.006 Mechtcherine, 2012, Towards a durability framework for structural elements and structures made of or strengthened with high-performance fibre-reinforced composites, Constr. Build. Mater., 31, 94, 10.1016/j.conbuildmat.2011.12.072 W. Brameshuber, Report 36: textile reinforced concrete-state-of-the-art report of RILEM TC 201-TRC, RILEM publications, 2006. Mechtcherine, 2013, Novel cement-based composites for the strengthening and repair of concrete structures, Constr. Build. Mater., 41, 365, 10.1016/j.conbuildmat.2012.11.117 Scheffler, 2009, Interphase modification of alkali-resistant glass fibres and carbon fibres for textile reinforced concrete II: water adsorption and composite interphases, Compos. Sci. Technol., 69, 905, 10.1016/j.compscitech.2008.12.020 Katz, 1996, A special technique for determining the bond strength of micro-fibres in cement matrix by pullout test, J. Mater. Sci. Lett., 15, 1821, 10.1007/BF00275353 Katz, 1995, Bond properties of carbon fibers in cementitious matrix, J. Mater. Civ. Eng., 7, 125, 10.1061/(ASCE)0899-1561(1995)7:2(125) Zheng, 2020, Modification of renewable cardanol onto carbon fiber for the improved interfacial properties of advanced polymer composites, Polymers, 12, 45, 10.3390/polym12010045 Dvorkin, 2013, Influence of bundle coating on the tensile behavior, bonding, cracking and fluid transport of fabric cement-based composites, Cem. Concr. Compos., 42, 9, 10.1016/j.cemconcomp.2013.05.005 Zhang, 2016, The feasibility of modified magnesia-phosphate cement as a heat resistant adhesive for strengthening concrete with carbon sheets, Appl. Sci., 6, 178, 10.3390/app6060178 Katz, 2000, Modeling the effect of high temperature on the bond of FRP reinforcing bars to concrete, Cem. Concr. Compos., 22, 433, 10.1016/S0958-9465(00)00043-3 Hamad, 2017, Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures, Constr. Build. Mater., 142, 521, 10.1016/j.conbuildmat.2017.03.113 D.A.S. Rambo, F. de Andrade Silva, R.D. Toledo Filho, O.d.F.M. Gomes, Effect of elevated temperatures on the mechanical behavior of basalt textile reinforced refractory concrete, Materials & Design (1980-2015) 65 (2015) 24-33. de Andrade Silva, 2014, Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete, Cem. Concr. Compos., 48, 26, 10.1016/j.cemconcomp.2014.01.007 Mechtcherine, 2020, Mineral-impregnated carbon fiber composites as novel reinforcement for concrete construction: material and automation perspectives, Autom. Constr., 110, 10.1016/j.autcon.2019.103002 K. Schneider, A. Michel, M. Liebscher, V. Mechtcherine, Verbundverhalten mineralisch gebundener und polymergebundener Bewehrungsstrukturen aus Carbonfasern bei Temperaturen bis 500° C, Beton‐und Stahlbetonbau 113(12) (2018) 886-894. Nadiv, 2017, Micro-and nanoparticle mineral coating for enhanced properties of carbon multifilament yarn cement-based composites, Compos. B Eng., 111, 179, 10.1016/j.compositesb.2016.12.005 Schneider, 2017, Mineral-based coating of plasma-treated carbon fibre rovings for carbon concrete composites with enhanced mechanical performance, Materials, 10, 360, 10.3390/ma10040360 Luo, 2011, Surface and wettability property analysis of CCF300 carbon fibers with different sizing or without sizing, Mater. Des., 32, 941, 10.1016/j.matdes.2010.08.004 Zhang, 2012, Influence of sizing molecular weight on the properties of carbon fibers and its composites, Mater. Des., 34, 649, 10.1016/j.matdes.2011.05.021 Zhang, 2011, Effect of the molecular weight of sizing agent on the surface of carbon fibres and interface of its composites, Appl. Surf. Sci., 257, 1840, 10.1016/j.apsusc.2010.08.102 Dai, 2012, Chemical interaction between carbon fibers and surface sizing, J. Appl. Polym. Sci., 124, 2127, 10.1002/app.35226 Li, 2019, Electrochemical modification of carbon fiber yarns in cementitious pore solution for an enhanced interaction towards concrete matrices, Appl. Surf. Sci., 487, 52, 10.1016/j.apsusc.2019.04.246 Tang, 1997, A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix, Polym. Compos., 18, 100, 10.1002/pc.10265 D. Varma, S. Saxena, N. Gupta, I. Varma, Carbon fibre/epoxy composites: Effect of epoxy network and surface treatment of fibres on interfacial shear strength, (1997). Lin, 1997, Application of plasma technologies in fibre-reinforced polymer composites, A review of recent developments, Composites (Part A), 28, 73, 10.1016/S1359-835X(96)00097-8 Diblíková, 2019, The effect of carbon fiber plasma treatment on the wettability and interlaminar shear strength of geopolymer composite, J. Aust. Ceram. Soc., 1 Zhao, 2020, Plasma-generated silicon oxide coatings of carbon fibres for improved bonding to mineral-based impregnation materials and concrete matrices, Cem. Concr. Compos., 103667 Gallucci, 2013, Effect of temperature on the microstructure of calcium silicate hydrate (CSH), Cem. Concr. Res., 53, 185, 10.1016/j.cemconres.2013.06.008 Jin, 1994, Properties of carbon fibers modified by oxygen plasma, Polym. Int., 34, 181, 10.1002/pi.1994.210340209 Yuan, 1991, Plasma surface treatments on carbon fibers. II. Mechanical property and interfacial shear strength, J. Appl. Polym. Sci., 42, 2525, 10.1002/app.1991.070420918 Huang, 2019, Ethanol plasma-induced polymerization of carbon fiber surface for improving mechanical properties of carbon fiber-reinforced lightweight oil well cement, Appl. Surf. Sci., 497, 10.1016/j.apsusc.2019.143765 Conrads, 2000, Plasma generation and plasma sources, Plasma Sources Sci. Technol., 9, 441, 10.1088/0963-0252/9/4/301 Vagin, 2003, Glow discharge in singlet oxygen, Plasma Phys. Rep., 29, 211, 10.1134/1.1561115 Naumov, 2002, Modeling of singlet oxygen production in nonequilibrium O2 gas discharge plasma, Nonequilibrium Process. Appl., 62 Bismarck, 1999, Influence of oxygen plasma treatment of PAN-based carbon fibers on their electrokinetic and wetting properties, J. Colloid Interface Sci., 210, 60, 10.1006/jcis.1998.5912 Chen, 2009, Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment, J. Phys. Chem. C, 113, 7659, 10.1021/jp9012015 K. Schneider, M. Butler, V. Mechtcherine, Carbon Concrete Composites C3–Nachhaltige Bindemittel und Betone für die Zukunft, Beton‐und Stahlbetonbau 112(12) (2017) 784-794. Ranjbarian, 2018, A novel test setup for the characterization of bridging behaviour of single microfibres embedded in a mineral-based matrix, Cem. Concr. Comp., 92, 92, 10.1016/j.cemconcomp.2018.05.017 El Asloun, 1989, On the estimation of the tensile strength of carbon fibres at short lengths, J. Mater. Sci., 24, 3504, 10.1007/BF02385732 Xie, 2011, Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment, Surf. Coat. Technol., 206, 191, 10.1016/j.surfcoat.2011.04.016 Deng, 1998, Evaluation of fibre tensile strength and fibre/matrix adhesion using single fibre fragmentation tests, Compos. A Appl. Sci. Manuf., 29, 423, 10.1016/S1359-835X(97)00094-8 Pittman, 1998, Oxygen plasma and isobutylene plasma treatments of carbon fibers: determination of surface functionality and effects on composite properties, Carbon, 36, 25, 10.1016/S0008-6223(97)00147-4 Ho, 2008, Continuous atmospheric plasma fluorination of carbon fibres, Compos. A Appl. Sci. Manuf., 39, 364, 10.1016/j.compositesa.2007.10.008 Qian, 2008, Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level, Chem. Mater., 20, 1862, 10.1021/cm702782j Schaefer, 2011, Effects of electrophoretically deposited carbon nanofibers on the interface of single carbon fibers embedded in epoxy matrix, Carbon, 49, 2750, 10.1016/j.carbon.2011.02.070 Servinis, 2017, Electrochemical surface modification of carbon fibres by grafting of amine, carboxylic and lipophilic amide groups, Carbon, 118, 393, 10.1016/j.carbon.2017.03.064 Scheffler, 2009, Aging of alkali-resistant glass and basalt fibers in alkaline solutions: evaluation of the failure stress by Weibull distribution function, J. Non-Cryst. Solids, 355, 2588, 10.1016/j.jnoncrysol.2009.09.018 C. Scheffler, Zur Beurteilung von AR-Glasfasern in alkalischer Umgebung, (2009). Mujin, 1989, The surface of carbon fibres continuously treated by cold plasma, Compos. Sci. Technol., 34, 353, 10.1016/0266-3538(89)90004-3 Jang, 2000, The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites, J. Mater. Sci., 35, 2297, 10.1023/A:1004791313979 Wei, 2003, ESEM study of size removal from ceramic fibers by plasma treatment, Appl. Surf. Sci., 220, 217, 10.1016/S0169-4332(03)00867-5 Jankowski, 2010 Lee, 1994, Global model of plasma chemistry in a high density oxygen discharge, J. Electrochem. Soc., 141, 1546, 10.1149/1.2054960 Bae, 2000, Effects of oxygen ion beam plasma conditions on the properties of Indium tin oxide thin films, Vacuum, 56, 77, 10.1016/S0042-207X(99)00169-4 Sugama, 1988, Oxidation of carbon fiber surfaces for improvement in fiber-cement interfacial bond at a hydrothermal temperature of 300° C, Cem. Concr. Res., 18, 290, 10.1016/0008-8846(88)90013-0