Oxygen plasma modification of carbon fiber rovings for enhanced interaction toward mineral-based impregnation materials and concrete matrices
Tài liệu tham khảo
Schneider, 2019, Mineral-impregnated carbon fibre reinforcement for high temperature resistance of thin-walled concrete structures, Cem. Concr. Compos., 97, 68, 10.1016/j.cemconcomp.2018.12.006
Mechtcherine, 2012, Towards a durability framework for structural elements and structures made of or strengthened with high-performance fibre-reinforced composites, Constr. Build. Mater., 31, 94, 10.1016/j.conbuildmat.2011.12.072
W. Brameshuber, Report 36: textile reinforced concrete-state-of-the-art report of RILEM TC 201-TRC, RILEM publications, 2006.
Mechtcherine, 2013, Novel cement-based composites for the strengthening and repair of concrete structures, Constr. Build. Mater., 41, 365, 10.1016/j.conbuildmat.2012.11.117
Scheffler, 2009, Interphase modification of alkali-resistant glass fibres and carbon fibres for textile reinforced concrete II: water adsorption and composite interphases, Compos. Sci. Technol., 69, 905, 10.1016/j.compscitech.2008.12.020
Katz, 1996, A special technique for determining the bond strength of micro-fibres in cement matrix by pullout test, J. Mater. Sci. Lett., 15, 1821, 10.1007/BF00275353
Katz, 1995, Bond properties of carbon fibers in cementitious matrix, J. Mater. Civ. Eng., 7, 125, 10.1061/(ASCE)0899-1561(1995)7:2(125)
Zheng, 2020, Modification of renewable cardanol onto carbon fiber for the improved interfacial properties of advanced polymer composites, Polymers, 12, 45, 10.3390/polym12010045
Dvorkin, 2013, Influence of bundle coating on the tensile behavior, bonding, cracking and fluid transport of fabric cement-based composites, Cem. Concr. Compos., 42, 9, 10.1016/j.cemconcomp.2013.05.005
Zhang, 2016, The feasibility of modified magnesia-phosphate cement as a heat resistant adhesive for strengthening concrete with carbon sheets, Appl. Sci., 6, 178, 10.3390/app6060178
Katz, 2000, Modeling the effect of high temperature on the bond of FRP reinforcing bars to concrete, Cem. Concr. Compos., 22, 433, 10.1016/S0958-9465(00)00043-3
Hamad, 2017, Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures, Constr. Build. Mater., 142, 521, 10.1016/j.conbuildmat.2017.03.113
D.A.S. Rambo, F. de Andrade Silva, R.D. Toledo Filho, O.d.F.M. Gomes, Effect of elevated temperatures on the mechanical behavior of basalt textile reinforced refractory concrete, Materials & Design (1980-2015) 65 (2015) 24-33.
de Andrade Silva, 2014, Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete, Cem. Concr. Compos., 48, 26, 10.1016/j.cemconcomp.2014.01.007
Mechtcherine, 2020, Mineral-impregnated carbon fiber composites as novel reinforcement for concrete construction: material and automation perspectives, Autom. Constr., 110, 10.1016/j.autcon.2019.103002
K. Schneider, A. Michel, M. Liebscher, V. Mechtcherine, Verbundverhalten mineralisch gebundener und polymergebundener Bewehrungsstrukturen aus Carbonfasern bei Temperaturen bis 500° C, Beton‐und Stahlbetonbau 113(12) (2018) 886-894.
Nadiv, 2017, Micro-and nanoparticle mineral coating for enhanced properties of carbon multifilament yarn cement-based composites, Compos. B Eng., 111, 179, 10.1016/j.compositesb.2016.12.005
Schneider, 2017, Mineral-based coating of plasma-treated carbon fibre rovings for carbon concrete composites with enhanced mechanical performance, Materials, 10, 360, 10.3390/ma10040360
Luo, 2011, Surface and wettability property analysis of CCF300 carbon fibers with different sizing or without sizing, Mater. Des., 32, 941, 10.1016/j.matdes.2010.08.004
Zhang, 2012, Influence of sizing molecular weight on the properties of carbon fibers and its composites, Mater. Des., 34, 649, 10.1016/j.matdes.2011.05.021
Zhang, 2011, Effect of the molecular weight of sizing agent on the surface of carbon fibres and interface of its composites, Appl. Surf. Sci., 257, 1840, 10.1016/j.apsusc.2010.08.102
Dai, 2012, Chemical interaction between carbon fibers and surface sizing, J. Appl. Polym. Sci., 124, 2127, 10.1002/app.35226
Li, 2019, Electrochemical modification of carbon fiber yarns in cementitious pore solution for an enhanced interaction towards concrete matrices, Appl. Surf. Sci., 487, 52, 10.1016/j.apsusc.2019.04.246
Tang, 1997, A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix, Polym. Compos., 18, 100, 10.1002/pc.10265
D. Varma, S. Saxena, N. Gupta, I. Varma, Carbon fibre/epoxy composites: Effect of epoxy network and surface treatment of fibres on interfacial shear strength, (1997).
Lin, 1997, Application of plasma technologies in fibre-reinforced polymer composites, A review of recent developments, Composites (Part A), 28, 73, 10.1016/S1359-835X(96)00097-8
Diblíková, 2019, The effect of carbon fiber plasma treatment on the wettability and interlaminar shear strength of geopolymer composite, J. Aust. Ceram. Soc., 1
Zhao, 2020, Plasma-generated silicon oxide coatings of carbon fibres for improved bonding to mineral-based impregnation materials and concrete matrices, Cem. Concr. Compos., 103667
Gallucci, 2013, Effect of temperature on the microstructure of calcium silicate hydrate (CSH), Cem. Concr. Res., 53, 185, 10.1016/j.cemconres.2013.06.008
Jin, 1994, Properties of carbon fibers modified by oxygen plasma, Polym. Int., 34, 181, 10.1002/pi.1994.210340209
Yuan, 1991, Plasma surface treatments on carbon fibers. II. Mechanical property and interfacial shear strength, J. Appl. Polym. Sci., 42, 2525, 10.1002/app.1991.070420918
Huang, 2019, Ethanol plasma-induced polymerization of carbon fiber surface for improving mechanical properties of carbon fiber-reinforced lightweight oil well cement, Appl. Surf. Sci., 497, 10.1016/j.apsusc.2019.143765
Conrads, 2000, Plasma generation and plasma sources, Plasma Sources Sci. Technol., 9, 441, 10.1088/0963-0252/9/4/301
Vagin, 2003, Glow discharge in singlet oxygen, Plasma Phys. Rep., 29, 211, 10.1134/1.1561115
Naumov, 2002, Modeling of singlet oxygen production in nonequilibrium O2 gas discharge plasma, Nonequilibrium Process. Appl., 62
Bismarck, 1999, Influence of oxygen plasma treatment of PAN-based carbon fibers on their electrokinetic and wetting properties, J. Colloid Interface Sci., 210, 60, 10.1006/jcis.1998.5912
Chen, 2009, Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment, J. Phys. Chem. C, 113, 7659, 10.1021/jp9012015
K. Schneider, M. Butler, V. Mechtcherine, Carbon Concrete Composites C3–Nachhaltige Bindemittel und Betone für die Zukunft, Beton‐und Stahlbetonbau 112(12) (2017) 784-794.
Ranjbarian, 2018, A novel test setup for the characterization of bridging behaviour of single microfibres embedded in a mineral-based matrix, Cem. Concr. Comp., 92, 92, 10.1016/j.cemconcomp.2018.05.017
El Asloun, 1989, On the estimation of the tensile strength of carbon fibres at short lengths, J. Mater. Sci., 24, 3504, 10.1007/BF02385732
Xie, 2011, Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment, Surf. Coat. Technol., 206, 191, 10.1016/j.surfcoat.2011.04.016
Deng, 1998, Evaluation of fibre tensile strength and fibre/matrix adhesion using single fibre fragmentation tests, Compos. A Appl. Sci. Manuf., 29, 423, 10.1016/S1359-835X(97)00094-8
Pittman, 1998, Oxygen plasma and isobutylene plasma treatments of carbon fibers: determination of surface functionality and effects on composite properties, Carbon, 36, 25, 10.1016/S0008-6223(97)00147-4
Ho, 2008, Continuous atmospheric plasma fluorination of carbon fibres, Compos. A Appl. Sci. Manuf., 39, 364, 10.1016/j.compositesa.2007.10.008
Qian, 2008, Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level, Chem. Mater., 20, 1862, 10.1021/cm702782j
Schaefer, 2011, Effects of electrophoretically deposited carbon nanofibers on the interface of single carbon fibers embedded in epoxy matrix, Carbon, 49, 2750, 10.1016/j.carbon.2011.02.070
Servinis, 2017, Electrochemical surface modification of carbon fibres by grafting of amine, carboxylic and lipophilic amide groups, Carbon, 118, 393, 10.1016/j.carbon.2017.03.064
Scheffler, 2009, Aging of alkali-resistant glass and basalt fibers in alkaline solutions: evaluation of the failure stress by Weibull distribution function, J. Non-Cryst. Solids, 355, 2588, 10.1016/j.jnoncrysol.2009.09.018
C. Scheffler, Zur Beurteilung von AR-Glasfasern in alkalischer Umgebung, (2009).
Mujin, 1989, The surface of carbon fibres continuously treated by cold plasma, Compos. Sci. Technol., 34, 353, 10.1016/0266-3538(89)90004-3
Jang, 2000, The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites, J. Mater. Sci., 35, 2297, 10.1023/A:1004791313979
Wei, 2003, ESEM study of size removal from ceramic fibers by plasma treatment, Appl. Surf. Sci., 220, 217, 10.1016/S0169-4332(03)00867-5
Jankowski, 2010
Lee, 1994, Global model of plasma chemistry in a high density oxygen discharge, J. Electrochem. Soc., 141, 1546, 10.1149/1.2054960
Bae, 2000, Effects of oxygen ion beam plasma conditions on the properties of Indium tin oxide thin films, Vacuum, 56, 77, 10.1016/S0042-207X(99)00169-4
Sugama, 1988, Oxidation of carbon fiber surfaces for improvement in fiber-cement interfacial bond at a hydrothermal temperature of 300° C, Cem. Concr. Res., 18, 290, 10.1016/0008-8846(88)90013-0