Oxygen Reduction Reaction
Tài liệu tham khảo
Zhang, 2011, J. Phys. Chem. C, 115, 11170, 10.1021/jp201991j
Yu, 2011, J. Catal., 282, 183, 10.1016/j.jcat.2011.06.015
Boukhvalov, 2008, Nano Lett., 8, 4373, 10.1021/nl802234n
Ikeda, 2008, J. Phys. Chem. C, 112, 14706, 10.1021/jp806084d
Wang, 2009, Science, 324, 768, 10.1126/science.1170335
Li, 2009, ACS Nano, 3, 1952, 10.1021/nn9003428
Li, 2009, J. Am. Chem. Soc., 131, 15939, 10.1021/ja907098f
Esrafili, 2015, Int. J. Quant. Chem., 115, 1153, 10.1002/qua.24942
Esrafili, 2016, Chem. Phys. Lett., 649, 37, 10.1016/j.cplett.2016.02.028
Wang, 2012, ACS Catal., 2, 781, 10.1021/cs200652y
Zhou, 2014, Adv. Energy Mater., 4, 1301523, 10.1002/aenm.201301523
Dai, 2015, Chem. Rev., 115, 4823, 10.1021/cr5003563
Fan, 2015, Chem. Soc. Rev., 44, 3023, 10.1039/C5CS00094G
Soo, 2015, Appl. Catal. A Gen., 497, 198, 10.1016/j.apcata.2015.03.008
Okamoto, 2009, Appl. Surf. Sci., 256, 335, 10.1016/j.apsusc.2009.08.027
Xiong, 2013, Carbon, 52, 181, 10.1016/j.carbon.2012.09.019
Zhang, 2015, Phys. Chem. Chem. Phys., 17, 20006, 10.1039/C5CP01922B
Jiao, 2014, J. Am. Chem. Soc., 136, 4394, 10.1021/ja500432h
Wang, 2010, ACS Nano, 4, 1790, 10.1021/nn100315s
Chai, 2014, J. Am. Chem. Soc., 136, 13629, 10.1021/ja502646c
Y.L. Liangti Qu, J.-B. Baek, L. Da, 3 (2010) 1321.
Shao, 2010, J. Mater. Chem., 20, 7491, 10.1039/c0jm00782j
Liang, 2012, Angew. Chem. Int. Ed., 51, 11496, 10.1002/anie.201206720
Wang, 2012, Angew. Chem. Int. Ed., 51, 4209, 10.1002/anie.201109257
Zhang, 2012, Langmuir ACS J. Surf. Colloids, 28, 7542, 10.1021/la2043262
Fan, 2013, RSC Adv., 3, 5498, 10.1039/c3ra23016c
Esrafili, 2015, ChemPhysChem, 16, 3719, 10.1002/cphc.201500488
Kim, 2011, Phys. Chem. Chem. Phys., 13, 17505, 10.1039/c1cp21665a
Kurak, 2009, J. Phys. Chem. C, 113, 6730, 10.1021/jp811518e
Boukhvalov, 2012, Nanoscale, 4, 417, 10.1039/C1NR11307K
Chai, 2014, J. Am. Chem. Soc., 136, 13629, 10.1021/ja502646c
Sheng, 2011, ACS Nano, 5, 4350, 10.1021/nn103584t
Lai, 2012, Energy Environ. Sci., 5, 7936, 10.1039/c2ee21802j
Bao, 2013, Top. Catal., 56, 1623, 10.1007/s11244-013-0097-z
Li, 2014, J. Catal., 314, 66, 10.1016/j.jcat.2014.03.011
Bhattacharjee, 2015, J. Phys. Chem. Lett., 6, 1653, 10.1021/acs.jpclett.5b00304
Zhang, 2015, ACS Catal., 5, 7244, 10.1021/acscatal.5b01563
Hou, 2016, Chem. Phys. Lett., 663, 123, 10.1016/j.cplett.2016.10.003
Matter, 2006, J. Catal., 239, 83, 10.1016/j.jcat.2006.01.022
Kundu, 2009, J. Phys. Chem. C, 113, 14302, 10.1021/jp811320d
Feng, 2012, Phys. Rev. B, 85, 155454, 10.1103/PhysRevB.85.155454
Kattel, 2014, J. Mater. Chem. A, 2, 10273, 10.1039/c4ta01460j
Ferrighi, 2013, J. Phys. Chem. C, 118, 223, 10.1021/jp410966r
Saidi, 2013, J. Phys. Chem. Lett., 4, 4160, 10.1021/jz402090d
Zhang, 2013, J. Mol. Model., 19, 5515, 10.1007/s00894-013-2047-x
Sidik, 2006, J. Phys. Chem. B, 110, 1787, 10.1021/jp055150g
Zhang, 2005, J. Am. Chem. Soc., 127, 12480, 10.1021/ja053695i
Stamenkovic, 2007, Science, 315, 493, 10.1126/science.1135941
Nilekar, 2008, Surf. Sci., 602, L89, 10.1016/j.susc.2008.05.036
Zhang, 2005, Angew. Chem. Int. Ed., 44, 2132, 10.1002/anie.200462335
Guo, 2013, J. Am. Chem. Soc., 135, 13879, 10.1021/ja406091p
Sankarasubramanian, 2016, J. Power Sour., 319, 202, 10.1016/j.jpowsour.2016.04.054
O'hayre, 2016
Lee, 2010, Electrochem. Commun., 12, 1052, 10.1016/j.elecom.2010.05.023
Rao, 2010, J. Phys. Chem. Lett., 1, 2622, 10.1021/jz100971v
Subramanian, 2009, J. Power Sour., 188, 38, 10.1016/j.jpowsour.2008.11.087
Qu, 2010, ACS Nano, 4, 1321, 10.1021/nn901850u
Roques, 2005, J. Electrochem. Soc., 152, E193, 10.1149/1.1896328
Hansen, 2008, Phys. Chem. Chem. Phys., 10, 3722, 10.1039/b803956a
Gong, 2015, Chem. Mater., 27, 1181, 10.1021/cm5037502
Zheng, 2013, Angew. Chem., 125, 3192, 10.1002/ange.201209548
Li, 2015, J. Power Sour., 294, 360, 10.1016/j.jpowsour.2015.06.088
Dong, 2015, Chem. Asian J., 10, 2609, 10.1002/asia.201500707
Ma, 2015, Phys. E Low-Dimens. Syst. Nanostruct., 66, 40, 10.1016/j.physe.2014.09.022
Jiang, 2015, Electrochim. Acta, 174, 826, 10.1016/j.electacta.2015.06.050
Bag, 2015, Electrochim. Acta, 163, 16, 10.1016/j.electacta.2015.02.130
Qu, 2016, Nano Energy, 19, 373, 10.1016/j.nanoen.2015.11.027
Zhang, 2016, Angew. Chem., 128, 2270, 10.1002/ange.201510495
Ai, 2014, Adv. Mater., 26, 6186, 10.1002/adma.201401427
Zhang, 2015, J. Power Sour., 276, 222, 10.1016/j.jpowsour.2014.11.105
Vineesh, 2015, Appl. Mater. Today, 1, 74, 10.1016/j.apmt.2015.09.002
Imran Jafri, 2010, J. Mater. Chem., 20, 7114, 10.1039/c0jm00467g
Wu, 2012, J. Am. Chem. Soc., 134, 9082, 10.1021/ja3030565
Jia, 2011, J. Phys. Chem. C, 115, 11466, 10.1021/jp2023617
Ghanbarlou, 2015, J. Power Sour., 273, 981, 10.1016/j.jpowsour.2014.10.001
Jukk, 2014, Electrochim. Acta, 137, 206, 10.1016/j.electacta.2014.06.020
Stambula, 2014, J. Phys. Chem. C, 118, 3890, 10.1021/jp408979h
Geng, 2011, Energy Environ. Sci., 4, 760, 10.1039/c0ee00326c
Groves, 2012, J. Phys. Chem. C, 116, 10548, 10.1021/jp203734d
Zhang, 2015, RSC Adv., 5, 82804, 10.1039/C5RA15315H
Liu, 2017, Carbon, 115, 11, 10.1016/j.carbon.2016.12.094
Orellana, 2013, J. Phys. Chem. C, 117, 9812, 10.1021/jp4002115
Zhang, 2014, J. Power Sour., 255, 65, 10.1016/j.jpowsour.2014.01.008
Sun, 2014, Phys. Chem. Chem. Phys., 16, 13733, 10.1039/C4CP00037D
Zitolo, 2015, Nat. Mater., 14, 937, 10.1038/nmat4367
Wu, 2011, Science, 332, 443, 10.1126/science.1200832
Zhu, 2014, Angew. Chem. Int. Ed., 53, 10673, 10.1002/anie.201405314
Kong, 2014, ACS Catal., 4, 1793, 10.1021/cs401257j
Liang, 2014, ACS Catal., 4, 4170, 10.1021/cs501170a
Fu, 2016, ACS Appl. Mater. Interfaces, 8, 6488, 10.1021/acsami.5b12746
Olson, 2010, J. Phys. Chem. C, 114, 5049, 10.1021/jp910572g
Liu, 2016, J. Phys. Chem. C, 120, 1586, 10.1021/acs.jpcc.5b10334
Li, 2015, ACS Appl. Mater. Interfaces, 7, 27405, 10.1021/acsami.5b09169
Lu, 2015, Carbon, 84, 500, 10.1016/j.carbon.2014.12.048
Esrafili, 2015, Adv. Mater. Lett., 6, 527, 10.5185/amlett.2015.5751
Sheng, 2012, J. Mater. Chem., 22, 390, 10.1039/C1JM14694G
Zhang, 2013, Adv. Mater., 25, 4932, 10.1002/adma.201301870
Yang, 2011, Angew. Chem., 123, 7270, 10.1002/ange.201101287
Zheng, 2013, Angew. Chem., 125, 3192, 10.1002/ange.201209548
Fazio, 2014, J. Catal., 318, 203, 10.1016/j.jcat.2014.07.024
Jiang, 2016, J. Phys. Chem. C, 120, 6612, 10.1021/acs.jpcc.6b00136
Wang, 2016, J. Phys. Chem. C, 120, 17427, 10.1021/acs.jpcc.6b04639
Kaukonen, 2013, ACS Catal., 3, 159, 10.1021/cs300605t
Stolbov, 2015, J. Chem. Phys., 142, 154703, 10.1063/1.4917468
Boone, 2017, Electrochim. Acta, 247, 19, 10.1016/j.electacta.2017.06.160
del Cueto, 2015, J. Phys. Chem. C, 119, 2004, 10.1021/jp512588r
Bhatt, 2016, J. Phys. Chem. C, 120, 26435, 10.1021/acs.jpcc.6b09674
Liu, 2011, Angew. Chem., 123, 3315, 10.1002/ange.201006768
Li, 2013, RSC Adv., 3, 9978, 10.1039/c3ra41079j
Kaukonen, 2013, ACS Catal., 3, 159, 10.1021/cs300605t
Bai, 2016, Carbon, 105, 214, 10.1016/j.carbon.2016.04.033
Chen, 2016, Appl. Surf. Sci., 379, 291, 10.1016/j.apsusc.2016.04.076
Bai, 2016, ChemCatChem, 8, 3353, 10.1002/cctc.201600838
Zhang, 2015, Chem. Phys. Lett., 641, 112, 10.1016/j.cplett.2015.10.067
Liu, 2013, J. Phys. Chem. C, 117, 1350, 10.1021/jp3090952
Liu, 2015, J. Power Sour., 273, 1189, 10.1016/j.jpowsour.2014.09.102
Jin, 2015, Int. J. Hydrog. Energy, 40, 5126, 10.1016/j.ijhydene.2015.02.101
Xu, 2015, J. Nanopart. Res., 17, 25, 10.1007/s11051-014-2834-z
McClure, 2016, J. Phys. Chem. C, 120, 28545, 10.1021/acs.jpcc.6b08498
Wu, 2016, Energy Environ. Sci., 9, 3736, 10.1039/C6EE01867J
Jiao, 2016, J. Phys. Chem. C, 120, 8804, 10.1021/acs.jpcc.6b02097
Lee, 2017, Carbon, 122, 515, 10.1016/j.carbon.2017.07.001
Shao, 2016, Chem. Rev., 116, 3594, 10.1021/acs.chemrev.5b00462
Liang, 2017, J. Colloid Interface Sci., 490, 576, 10.1016/j.jcis.2016.11.101
Othman, 2012, Int. J. Hydrog. Energy, 37, 357, 10.1016/j.ijhydene.2011.08.095
Geng, 2015, J. Mater. Chem. A, 3, 1795, 10.1039/C4TA06008C
Jung, 2014, Nano Today, 9, 433, 10.1016/j.nantod.2014.06.006
Kakaei, 2017, J. Colloid Interface Sci., 490, 819, 10.1016/j.jcis.2016.12.011
Treimer, 2002, Electroanal, 14, 165, 10.1002/1521-4109(200202)14:3<165::AID-ELAN165>3.0.CO;2-6
Song, 2016, Electrochim. Acta, 191, 355, 10.1016/j.electacta.2016.01.083
Ma, 2015, Angew. Chem., 54, 1888, 10.1002/anie.201410258
Wu, 2016, Int. J. Hydrog. Energy, 41, 6805, 10.1016/j.ijhydene.2016.03.080
Jukk, 2014, Electrochim. Acta, 137, 206, 10.1016/j.electacta.2014.06.020
Zheng, 2014, J. Power Sour., 262, 270, 10.1016/j.jpowsour.2014.03.131
Dumitrescu, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 11493, 10.1073/pnas.1201370109
Song, 2016, J. Phys. Chem. C, 120, 2187, 10.1021/acs.jpcc.5b10358
Dai, 2015, Chem. Rev., 115, 4823, 10.1021/cr5003563
Pendashteh, 2017, Appl. Catal. B Environ., 201, 241, 10.1016/j.apcatb.2016.08.044
Kheirmand, 2007, J. Power Sour., 169, 327, 10.1016/j.jpowsour.2007.03.053
Kakaei, 2014, J. Mater. Chem., 2, 15428, 10.1039/C4TA03026E
Jo, 2015, RSC Adv., 5, 53637, 10.1039/C5RA06952A
Van Tam, 2017, J. Mater. Chem. A, 5, 10537, 10.1039/C7TA01485F
Georgakilas, 2012, Chem. Rev., 112, 6156, 10.1021/cr3000412
Liu, 2012, Electrochim. Acta, 81, 313, 10.1016/j.electacta.2012.07.022
Luo, 2017, J. Mater. Chem. A, 5, 21709, 10.1039/C7TA07608H
Liu, 2017, Carbon, 115, 763, 10.1016/j.carbon.2017.01.080
Bai, 2016, J. Power Sour., 306, 85, 10.1016/j.jpowsour.2015.10.081
Zheng, 2013, Electrochem. Commun., 28, 24, 10.1016/j.elecom.2012.11.037
Guo, 2016, Science, 351, 361, 10.1126/science.aad0832
Luo, 2011, J. Mater. Chem., 21, 8038, 10.1039/c1jm10845j
Liu, 2010, Angew. Chem. Int. Ed., 49, 2565, 10.1002/anie.200907289
Xing, 2014, ACS Nano, 8, 6856, 10.1021/nn501506p
Yadav, 2017, J. Sci. Adv. Mater. Devices, 2, 141, 10.1016/j.jsamd.2017.05.007
Sun, 2017, J. Colloid Interface Sci., 508, 154, 10.1016/j.jcis.2017.08.047
Shim, 2016, J. Ind. Eng. Chem., 42, 149, 10.1016/j.jiec.2016.07.044
Kumar, 2017, Carbon, 120, 419, 10.1016/j.carbon.2017.05.071
Fan, 2016, Electrochim. Acta, 216, 102, 10.1016/j.electacta.2016.09.014
Choi, 2014, Appl. Catal. B Environ., 144, 760, 10.1016/j.apcatb.2013.08.021
Yue, 2017, Catal. Sci. Technol., 7, 2228, 10.1039/C7CY00384F
Feng, 2013, Sci. Rep., 3
Zheng, 2013, Electrochem. Commun., 28, 24, 10.1016/j.elecom.2012.11.037
Liu, 2012, Electrochim. Acta, 81, 313, 10.1016/j.electacta.2012.07.022
Vikkisk, 2014, Appl. Catal. B Environ., 147, 369, 10.1016/j.apcatb.2013.09.011
Gao, 2017, Inorg. Chem. Front., 4, 1582, 10.1039/C7QI00387K
Yang, 2016, Sci. Adv., 2, e1501122, 10.1126/sciadv.1501122
Bo, 2014, ACS Appl. Mater. Interfaces, 6, 3023, 10.1021/am405609d
Liu, 2014, ACS Appl. Mater. Interfaces, 6, 4214, 10.1021/am405900r
Wu, 2015, ACS Appl. Mater. Interfaces, 7, 14763, 10.1021/acsami.5b02902
Ouyang, 2014, Int. J. Hydrog. Energy, 39, 15996, 10.1016/j.ijhydene.2014.01.045
Shinagawa, 2015, Sci. Rep., 5, 13801, 10.1038/srep13801
Wu, 2017, J. Mater. Chem. A, 5, 3239, 10.1039/C6TA10336G
Sun, 2013, Sci. Rep., 3
Navalon, 2017, Chem. Soc. Rev., 46, 4501, 10.1039/C7CS00156H
Kakaei, 2014, J. Mater. Chem. A, 2, 15428, 10.1039/C4TA03026E
Lu, 2017, RSC Adv., 7, 20398, 10.1039/C7RA00632B
Yang, 2012, ACS Nano, 6, 205, 10.1021/nn203393d
Li, 2017, Solid State Commun., 267, 33, 10.1016/j.ssc.2017.09.005
Liu, 2018, Carbon, 134, 316, 10.1016/j.carbon.2018.04.007
Park, 2014, Phys. Chem. Chem. Phys., 16, 103, 10.1039/C3CP54311K
Shi, 2018, J. Energy Chem., 27, 167, 10.1016/j.jechem.2017.09.014
Klingele, 2017, Electrochem. Commun., 77, 71, 10.1016/j.elecom.2017.02.015
Zhang, 2013, Adv. Mater., 25, 4932, 10.1002/adma.201301870
Yang, 2012, J. Am. Chem. Soc., 134, 16127, 10.1021/ja306376s
Wu, 2013, J. Mater. Chem. A, 1, 9889, 10.1039/c3ta11849e
Wu, 2015, Carbon, 82, 562, 10.1016/j.carbon.2014.11.008
Cai, 2017, J. Power Sour., 341, 165, 10.1016/j.jpowsour.2016.12.008
Zhao, 2017, Int. J. Electrochem. Sci., 12, 3537, 10.20964/2017.04.67
Kong, 2013, RSC Adv., 3, 4074, 10.1039/c3ra40190a
Xue, 2013, Phys. Chem. Chem. Phys., 15, 12220, 10.1039/c3cp51942b
Zhu, 2013, J. Mater. Chem. A, 1, 14700, 10.1039/c3ta13318d
Zuo, 2013, J. Mater. Chem. A, 1, 13476, 10.1039/c3ta13049e
Cheng, 2014, Electrochim. Acta, 143, 291, 10.1016/j.electacta.2014.08.001
Fei, 2014, ACS Nano, 8, 10837, 10.1021/nn504637y
Li, 2014, RSC Adv., 4, 37992, 10.1039/C4RA05126B
Xu, 2015, Phys. Chem. Chem. Phys., 17, 25440, 10.1039/C5CP04211A
Zhou, 2015, Green Chem., 17, 3552, 10.1039/C5GC00617A
Agnoli, 2016, J. Mater. Chem. A, 4, 5002, 10.1039/C5TA10599D
Yang, 2011, Chem. Int. Ed., 50, 7132, 10.1002/anie.201101287
Lv, 2015, Proc. Natl. Acad. Sci., 112, 14527, 10.1073/pnas.1505993112
Vineesh, 2015, Adv. Energy Mater., 5, 10.1002/aenm.201500658
Yeom, 2015, Sci. Rep., 5, 9817, 10.1038/srep09817
Karlický, 2012, J. Chem. Phys., 137, 034709, 10.1063/1.4736998
Karlický, 2013, ACS Nano, 7, 6434, 10.1021/nn4024027
Poh, 2013, Chem. Eur. J., 19, 2655, 10.1002/chem.201202972
Xu, 2015, J. Phys. Chem. C, 119, 17271, 10.1021/acs.jpcc.5b05595
Yao, 2012, Chem. Commun., 48, 1027, 10.1039/C2CC16192C
Tanaike, 2011, ECS Trans., 33, 71, 10.1149/1.3565503
Kakaei, 2016, J. Colloid Interface Sci., 479, 121, 10.1016/j.jcis.2016.06.058
Karlický, 2013, J. Chem. Theory Comput., 9, 4155, 10.1021/ct400476r
Xu, 2014, Adv. Mater., 26, 7317, 10.1002/adma.201402987
Jeon, 2013, Sci. Rep., 3
Wu, 2014, Chin. J. Catal., 35, 884, 10.1016/S1872-2067(14)60108-X
Kakaei, 2016, J. Colloid Interface Sci., 463, 46, 10.1016/j.jcis.2015.10.030
Kakaei, 2017, J. Colloid Interface Sci., 490, 819, 10.1016/j.jcis.2016.12.011
Marinoiu, 2017, Int. J. Hydrog. Energy, 42, 26877, 10.1016/j.ijhydene.2017.07.036
Sun, 2013, ACS Catal., 3, 1726, 10.1021/cs400374k
Chai, 2017, Energy Environ. Sci., 10, 1186, 10.1039/C6EE03446B
Zehtab Yazdi, 2015, ACS Appl. Mater. Interfaces, 7, 7786, 10.1021/acsami.5b01067
Chen, 2016, Microporous Mesoporous Mater., 225, 137, 10.1016/j.micromeso.2015.12.026
Li, 2015, ACS Appl. Mater. Interfaces, 7, 19626, 10.1021/acsami.5b03845
Zhang, 2017, J. Colloid Interface Sci., 505, 32, 10.1016/j.jcis.2017.05.069
Zhang, 2015, J. Power Sour., 279, 252, 10.1016/j.jpowsour.2015.01.016
Zehtab Yazdi, 2016, Carbon, 100, 99, 10.1016/j.carbon.2015.12.096
Xu, 2013, ChemSusChem, 6, 493, 10.1002/cssc.201200564
Wu, 2016, RSC Adv., 6, 22781, 10.1039/C5RA22136F
Amiinu, 2016, ACS Appl. Mater. Interfaces, 8, 29408, 10.1021/acsami.6b08719
Song, 2017, Chem. Phys. Lett., 677, 65, 10.1016/j.cplett.2017.03.088
Uosaki, 2014, J. Am. Chem. Soc., 136, 6542, 10.1021/ja500393g
Xu, 2014, Int. J. Hydrog. Energy, 39, 16043, 10.1016/j.ijhydene.2013.12.079
Jiang, 2015, ACS Appl. Mater. Interfaces, 7, 19398, 10.1021/acsami.5b05585
Gong, 2015, Chem. Mater., 27, 1181, 10.1021/cm5037502
Jiang, 2016, J. Phys. Chem. C, 120, 6612, 10.1021/acs.jpcc.6b00136
Zhao, 2015, J. Phys. Chem. C, 119, 26348, 10.1021/acs.jpcc.5b09037
Jiang, 2016, J. Mater. Chem. A, 4, 5877, 10.1039/C6TA01349J
Liu, 2016, J. Colloid Interface Sci., 464, 83, 10.1016/j.jcis.2015.11.007
Baik, 2017, J. CO2 Util., 20, 73, 10.1016/j.jcou.2017.05.012
Tai, 2014, RSC Adv., 4, 61437, 10.1039/C4RA10162F
Zhong, 2014, J. Power Sour., 272, 344, 10.1016/j.jpowsour.2014.08.114
Jiang, 2016, J. Phys. Chem. C, 120, 6612, 10.1021/acs.jpcc.6b00136
Ansari, 2015, Surf. Coat. Tech., 281, 68, 10.1016/j.surfcoat.2015.09.021
Pullamsetty, 2016, J. Colloid Interface Sci., 479, 260, 10.1016/j.jcis.2016.06.069
Pullamsetty, 2015, Int. J. Hydrog. Energy, 40, 10251, 10.1016/j.ijhydene.2015.06.020
Bo, 2013, Electrochim. Acta, 114, 582, 10.1016/j.electacta.2013.10.088
Byon, 2011, Chem. Mater., 23, 3421, 10.1021/cm2000649
Fouda-Onana, 2009, J. Electroanal. Chem., 636, 1, 10.1016/j.jelechem.2009.06.023
Rego, 2010, Electrochem. Commun., 12, 745, 10.1016/j.elecom.2010.03.022
Jin, 2010, Chem. Mater., 22, 5695, 10.1021/cm102187a
Yin, 2014, ACS Appl. Mater. Interfaces, 6, 2086, 10.1021/am405164f
Zhou, 2016, ACS Appl. Mater. Interfaces, 8, 25863, 10.1021/acsami.6b04963
Hou, 2016, J. Power Sour., 307, 561, 10.1016/j.jpowsour.2016.01.018
Thanasilp, 2011, Electrochim. Acta, 56, 1164, 10.1016/j.electacta.2010.10.026
Li, 2014, J. Power Sour., 272, 1078, 10.1016/j.jpowsour.2014.09.052
Khan, 2015, J. Power Sour., 282, 520, 10.1016/j.jpowsour.2015.02.090
Liu, 2014, J. Electroanal. Chem., 728, 41, 10.1016/j.jelechem.2014.06.024
Sun, 2015, Electrochim. Acta, 153, 566, 10.1016/j.electacta.2014.11.077
Zhu, 2015, Nano Energy, 13, 318, 10.1016/j.nanoen.2015.03.002
Yang, 2016, Electrochim. Acta, 209, 430, 10.1016/j.electacta.2016.05.114
He, 2013, Appl. Catal. B Environ., 132–133, 379, 10.1016/j.apcatb.2012.12.005
Nanjundan Ashok, 2015, Nanotechnology, 26, 492001, 10.1088/0957-4484/26/49/492001
Lee, 2016, Energy, 96, 314, 10.1016/j.energy.2015.12.088
Hoque, 2016, Nano Energy, 19, 27, 10.1016/j.nanoen.2015.11.004
Wang, 2013, Sci. Rep., 3, 2431, 10.1038/srep02431
Wang, 2010, J. Am. Chem. Soc., 132, 17664, 10.1021/ja107874u
Neergat, 2011, J. Electroanal. Chem., 658, 25, 10.1016/j.jelechem.2011.04.016
Lv, 2014, Electrochim. Acta, 136, 521, 10.1016/j.electacta.2014.05.138
Di Noto, 2012, Appl. Catal. B Environ., 111–112, 185, 10.1016/j.apcatb.2011.09.034
Vinayan, 2013, Int. J. Hydrog. Energy, 38, 2240, 10.1016/j.ijhydene.2012.11.091
Ju, 2014, Electrochim. Acta, 141, 89, 10.1016/j.electacta.2014.06.141
Kakaei, 2014, Energy, 65, 166, 10.1016/j.energy.2013.12.005
Kakaei, 2013, Carbon, 51, 195, 10.1016/j.carbon.2012.08.028
Seo, 2011, Electrochem. Commun., 13, 182, 10.1016/j.elecom.2010.12.008
Liu, 2013, Adv. Funct. Mater., 23, 1289, 10.1002/adfm.201202225
Lv, 2014, J. Power Sour., 269, 104, 10.1016/j.jpowsour.2014.07.036
Liu, 2015, Electrochim. Acta, 186, 552, 10.1016/j.electacta.2015.11.025
Liu, 2013, ACS Appl. Mater. Interfaces, 5, 5002, 10.1021/am4007897
Wang, 2014, ACS Appl. Mater. Interfaces, 6, 10172, 10.1021/am5014369
Fan, 2015, ACS Nano, 9, 7407, 10.1021/acsnano.5b02420
Zhang, 2015, J. Power Sour., 280, 640, 10.1016/j.jpowsour.2015.01.147
Parvez, 2012, ACS Nano, 6, 9541, 10.1021/nn302674k
Sun, 2014, Electrochim. Acta, 132, 136, 10.1016/j.electacta.2014.03.125
Wu, 2012, ACS Nano, 6, 9764, 10.1021/nn303275d