Oxides of Nitrogen (NO· and NO2 –) as Cofactors of the Myeloperoxidase System
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abu-Soud, H.M. and Hazen, S.L., Nitric Oxide Is a Physiological Substrate for Mammalian Peroxidases, J. Biol. Chem., 2000a, vol. 275, no. 48, pp. 37 524-37 532.
Abu-Soud, H.M. and Hazen, S.L., Nitric Oxide Modulates the Catalytic Activity of Myeloperoxidase, J. Biol. Chem., 2000b, vol. 275, no. 8, pp. 5425-5430.
Beckman, J.S. and Koppenol, W.H., Nitric Oxide, Superoxide, and Peroxynitrite: The Good, the Bad, and the Ugly, Am. J. Physiol., 1996, vol. 271, no. 9, pp. 1424-1437.
Beckman, J.S., Chen, J., Ischiropoulos, H., and Crow, L.P., Oxidative Chemistry of Peroxynitrite, Meth.Enzymol., 1994, vol. 233, pp. 229-240.
Bogdan, C., Röllinghoff, M., and Diefenbach, A., Reactive Oxygen and Reactive Nitrogen Intermediates in Innate and Specific Immunity, Curr. Opin. Immunol., 2000, vol. 12, no. 1, pp. 64-76.
Burner, U., Furtmüller, P.G., Ketle, A.J., Koppenol, W.H., and Obinger, C., Mechanism of Reaction of Myeloperoxidase with Nitrite, J. Biol. Chem., 2000, vol. 275, no. 27, pp. 20 597-20 601.
But, P.G., Murav'ev, R.A., Fomina, V.A., and Rogovin, V.V., Antimicrobial Activity of Myeloperoxidase from Neutrophil Peroxisome, Izv. Akad. Nauk. Ser. Biol., 2002, no. 3, pp. 266-270.
Chance, B., The Spectra of the Enzyme-Substrate Complexes of Catalase and Peroxidase, Arch. Biochem. Biophys., 1952, vol. 4, no. 2, pp. 404-415.
Cooper, C.E. and Odell, E., Interaction of Human Myeloperoxidase with Nitrite, FEBS Lett., 1992, vol. 314, no. 1, pp. 58-60.
Czapski, G.A., Avram, D., Sakharov, D.V., Wirtz, K.W.A., Strosznajder, J.B., and Pap, E.H.W., Activated Neutrophils Oxidize Extracellular Proteins of Endothelial Cells in Culture: Effect of Nitric Oxide Donors, Biochem. J., 2002, vol. 365, no. 3, pp. 897-902.
Dean, R.T., Fu, S., Stocker, R., and Davis, M.J., Biochemistry and Pathology of Radical-Mediated Protein Oxidation, Biochem. J., 1997, vol. 324, no. 1, pp. 1-18.
Eiserich, J.P., Cross, C.E., Jones, A.D., Halliwell, B., and van der Vliet, A., Formation of Nitrating and Chlorinating Species by Reaction of Nitrite with Hypochlorous Acid, J. Biol. Chem., 1996, vol. 271, no. 23, pp. 19 199-19 208.
Eiserich, J.P., Hristova, M., Cross, C.E., Jones, A.D., Freeman, B.A., Halliwell, B., and van der Vliet, A., Formation of Nitric Oxide-Derived Inflammatory Oxidants by Myeloperoxidase in Neutrophils, Nature, 1998, vol. 391, no. 341, pp. 393-397.
Evans, T.J., Buttery, L.D.H., Carpenter, A., Springall, D.R., Polak, J.M., and Cohen, J., Cytokine-Treated Human Neutrophils Contain Inducible Nitric Oxide Synthase That Produces Nitration of Ingested Bacteria, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, no. 11, pp. 9553-9558.
Fang, F.C., Mechanisms of Nitric Oxide-Related Antimicrobial Activity, J. Clin. Invest., 1997, vol. 99, no. 12, pp. 818-825.
Furtmüller, P.G., Burner, U., and Obinger, C., Reaction of Myeloperoxidase Compound I with Chloride, Bromide, Iodide and Thiocyanate, Biochemistry, 1998, vol. 37, no. 51, pp. 17 923-17 930.
Hampton, M.B., Kettle, A.J., and Winterbourn, C.C., Inside the Neutrophile Phagosome: Oxidants, Myeloperoxidase and Bacterial Killing, Blood, 1998, vol. 92, no. 9, pp. 3007-3017.
Heinecke, J.W., Mechanisms of Oxidative Damage by Myeloperoxidase in Atherosclerosis and Other Inflammatory Disorders, J. Lab. Clin. Med, 1999, vol. 133, no. 2, pp. 321-325.
Hurst, J.H., Myeloperoxidase: Active Site Structure and Catalytic Mechanisms, Peroxidases in Chemistry and Biology, Everse, J., Everse, K.E., and Glishman, M.B., Eds., CRC, 1991, pp. 37-62.
Ischiropoulos, H., Beers, H.F., and Ohnishi, S.T., Nitric Oxide Production and Perivascular Tyrosine Nitration in Brain Following Carbon Monoxide Poisoning in the Rat, J. Clin. Invest., 1996, vol. 97, no. 11, pp. 2260-2267.
Jiang, Q. and Hurst, J.H., Relative Chlorinating, Nitrating, and Oxidizing Capabilities of Neutrophils Determined with Phagocytosable Probes, J. Biol. Chem., 1997, vol. 272, no. 41, pp. 32 767-32 772.
Kaur, H. and Halliwell, B., Evidence of Nitric Oxide-Mediated Oxidative Damage in Chronic Inflammation. Nitrotyrosine in Serum and Synovial Fluid from Rheumatoid Patients, FEBS Lett., 1994, vol. 350, no. 1, pp. 9-12.
Kettle, A.J., Neutrophils Convert Tyrosyl Residues in Albumin to Chlorotyrosine, FEBS Lett., 1996, vol. 379, no. 1, pp. 103-106.
Kettle, A.J. and Winterbourn, C.C., Assays for the Chlorination Activity of Myeloperoxidase, Meth. Enzymol., 1994, vol. 233, pp. 502-511.
Kettle, A.J. and Winterbourn, C.C., Myeloperoxidase: A Key Regulator of Neutrophil Oxidant Production, Redox Rept., 1997, vol. 3, no. 1, pp. 3-15.
Kettle, A.J., van Dalen, C.J., and Winterbourn, C.C., Peroxynitrite and Myeloperoxidase Leave the Some Foot Print in Protein Nitration, Redox Rept., 1997, vol. 3, nos. 5-6, pp. 257-258.
Klebanoff, S.J., Reactive Nitrogen Intermediates and Antimicrobial Activity: Role of Nitrite, Free Radical Biol. Med., 1993, vol. 14, no. 2, pp. 351-360.
Koppenol, W.H., The Basic Chemistry of Nitrogen Monoxide and Peroxynitrite, Free Rad. Biol. Med., 1998, vol. 25, nos. 4/5, pp. 385-391.
Malik, Z., Jyer, S.S., and Kusner, D.J., Mycobacterium Tuberculosis Phagosome Exhibit Altered Calmodulin-Dependent Signal Transduction: Contribution of Phagosome-Lysosome Fusion and Intracellular Survival in Human Macrophages, J. Immunol., 2001, vol. 166, no. 11, pp. 3392-3401.
McMillan, K., Salerno, J.C., and Masters, S.S., Nitric Oxide Synthases: Analogies to Cytochrome P-450 Monooxygenases and Characterization of Recombinant Rat Neuronal Nitric Oxide Synthase Hemoprotein, Methods Enzymol., 1996, vol. 268, pp. 460-472.
Nathan, C.F. and Hibbs, J.B., Jr., Role of Nitric Oxide Synthesis in Macrophage Antimicrobial Activity, Curr. Opin. Immunol., 1991, vol. 3, no. 1, pp. 65-70.
Panasenko, O.M., Briviba, K., Klotz, J., and Sies, H., Oxidative Modification and Nitration of Human Low-Density Lipoproteins by the Reaction of Hypochlorous Acid with Nitrite, Arch. Biochem. Biophys., 1997, vol. 343, no. 1, pp. 254-259.
Podrez, E.A., Schmitt, D., Hoff, H.F., and Hazen, S.L., Myeloperoxidase-Generated Reactive Nitrogen Species Convert LDL into an Atherogenic Form in vitro, J. Clin. Invest., 1999, vol. 103, no. 5, pp. 1547-1560.
Pou, S., Nguyen, S.Y.H., Gladwell, T., and Rosen, M., Does Peroxynitrite Generate Hydroxyl Radical?, Biochim. Biophys. Acta, 1995, vol. 1244, no. 1, pp. 62-68.
Rogovin, V.V., Murav'ev, R.A., Mushtakova, V.M., and Fomina, V.A., The Relationship between the Components of Leukocyte Peroxisomes and Nitric Oxide Generation, Izv. Akad. Nauk. Ser. Biol., 1994, no. 5, pp. 824-832.
Ross, R., Atherosclerosis: An Inflammatory Disease, N. Engl. J. Med., 1999, vol. 340, no. 1, pp. 115-126.
Sampson, J.B., Ye, Y.Z., Rosen, H., and Beckman, J.S., Myeloperoxidase and Horseradish Peroxidase Catalyze Tyrosine Nitration in Proteins from Nitrite and Hydrogen Peroxide, Arch. Biochem. Biophys., 1998, vol. 356, no. 1, pp. 207-213.
Schmitt, D., Shen, Z., Zhang, R., Colles, S.M., Wu, W., Salomon, K.G., Chen, Y., Chisolm, G.M., and Hazen, S.L., Leukocytes Utilize Myeloperoxidase-Generated Nitrating Intermediates as Physiological Catalysts for the Generation of Biologically Active Oxidized Lipids and Sterols in Serum, Biochemistry, 1999, vol. 38, no. 51, pp. 16 904-16 915.
Stamler, J.S., Singel, D.J., and Loscalzo, J., Biochemistry of Nitric Oxide and Its Redox-Activated Forms, Science, 1992, vol. 258, no. 356, pp. 1898-1902.
Van Dalen, C., Winterbourn, C.C., Senthilmohan, R., and Kettle, A.J., Nitrite as a Substrate and Inhibitor of Myeloperoxidase, J. Biol. Chem., 2000, vol. 275, no. 16, pp. 11 638-11 644.
Zeng, J. and Fenna, R.E., X-Ray Crystal Structure of Canine Myeloperoxidase at 3 Å Resolution, J. Mol. Biol., 1992, vol. 226, no. 1, pp. 185-207.