Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions

Annual Review of Materials Research - Tập 41 Số 1 - Trang 337-367 - 2011
Zheng Yang1, Changhyun Ko1, Shriram Ramanathan1
1School of Engineering and Applied Sciences Harvard University Cambridge, Massachusetts 02138

Tóm tắt

Although phase transitions have long been a centerpiece of condensed matter materials science studies, a number of recent efforts focus on potentially exploiting the resulting functional property changes in novel electronics and photonics as well as understanding emergent phenomena. This is quite timely, given a grand challenge in twenty-first-century physical sciences is related to enabling continued advances in information processing and storage beyond conventional CMOS scaling. In this brief review, we discuss synthesis of strongly correlated oxides, mechanisms of metal-insulator transitions, and exploratory electron devices that are being studied. Particular emphasis is placed on vanadium dioxide, which undergoes a sharp metal-insulator transition near room temperature at ultrafast timescales. The article begins with an introduction to metal-insulator transition in oxides, followed by a brief discussion on the mechanisms leading to the phase transition. The role of materials synthesis in influencing functional properties is discussed briefly. Recent efforts on realizing novel devices such as field effect switches, optical detectors, nonlinear circuit components, and solid-state sensors are reviewed. The article concludes with a brief discussion on future research directions that may be worth consideration.

Từ khóa


Tài liệu tham khảo

10.1103/RevModPhys.40.677

10.1080/00018736900101397

3. Mott NF. 1974. Metal-Insulator Transitions. London: Taylor & Francis. 278 pp.

10.1146/annurev.ms.04.080174.001203

10.1146/annurev.pc.36.100185.001035

10.1201/b12795

7. Gebhard F. 1997. The Mott Metal-Insulator Transition: Models and Methods. Berlin/London: Springer. 317 pp.

10.1103/RevModPhys.70.1039

10.1016/S0081-1947(08)60020-X

10.1088/0034-4885/67/1/R01

10.1103/PhysRevLett.3.34

10.1103/RevModPhys.40.714

10.1126/science.168.3927.71

10.1146/annurev.ms.01.080171.000533

10.1146/annurev.ms.05.080175.001301

10.1016/0022-4596(84)90171-3

10.1080/00018739500101486

10.1126/science.288.5465.462

10.1063/1.1603080

10.1007/BF01303701

10.1126/science.264.5157.413

10.1103/PhysRevB.45.8209

10.1126/science.1150124

10.1038/40363

10.1103/PhysRevLett.78.4257

10.1126/science.280.5371.1925

10.1038/nnano.2009.266

10.1063/1.3245338

10.1063/1.3408899

10.1364/OE.18.011192

10.1021/nl0624768

10.1364/OE.17.018330

10.1063/1.3187531

10.1063/1.2431456

10.1021/nl900676n

10.1038/21526

10.1126/science.1100731

10.1109/MCD.2005.1414313

10.1109/MCD.2005.1438811

10.1126/science.1187597

10.1088/0370-1298/62/7/303

42. Peierls RE. 1964. Quantum Theory of Solids. Oxford, UK: Clarendon. 229 pp.

10.1103/RevModPhys.60.1129

10.1103/PhysRev.109.1492

10.1103/RevModPhys.66.261

10.1103/RevModPhys.80.1355

10.3891/acta.chem.scand.15-0217

10.1038/194678a0

10.1016/0022-4596(71)90091-0

10.1073/pnas.0609233103

10.1126/science.1147724

10.1103/PhysRevB.11.4383

10.1103/PhysRevLett.72.3389

10.1103/PhysRevLett.73.3043

10.1103/PhysRevLett.73.3042

10.1103/PhysRevB.70.161102

10.1103/PhysRevLett.97.266401

10.1016/0022-4596(73)90189-8

10.1016/S0039-6028(00)00111-4

10.1103/PhysRevB.68.024109

10.1016/j.elspec.2005.01.169

10.1016/0038-1098(69)90888-6

10.1103/PhysRevB.55.7850

10.1063/1.3058769

10.1063/1.3232241

10.1063/1.2817818

10.1103/PhysRevB.75.195102

10.1088/0953-8984/20/46/465204

10.1103/PhysRevB.77.195442

10.1103/PhysRevB.79.153107

10.1063/1.3000664

10.1063/1.2931006

10.1063/1.3186024

10.1103/PhysRevB.65.224113

10.1063/1.1762995

10.1021/nl8031839

10.1021/nl061831r

10.1038/nnano.2009.141

10.1021/nl9028973

10.1021/ja045976g

10.1021/nl070439q

10.1021/jp805537r

10.1021/nl900841k

10.1021/nl902020t

10.1002/anie.200460104

10.1063/1.112476

10.1063/1.1446215

10.1063/1.1518148

10.1007/BF00361182

10.1149/1.2135430

10.1149/1.2903208

10.1063/1.350285

10.1063/1.2767189

10.1116/1.2819268

10.1007/s10948-007-0303-y

10.1063/1.1663568

10.1116/1.1723217

10.1063/1.2384798

10.1063/1.3492716

10.1103/PhysRevB.82.205101

10.1063/1.1653835

10.1063/1.88432

10.1063/1.324401

10.1088/0953-8984/12/41/310

10.1007/s10853-009-3442-7

10.1063/1.3435466

10.1063/1.3050464

10.1016/j.physb.2005.07.032

10.1134/1.1482750

10.1088/1367-2630/6/1/052

10.1109/LED.2009.2034763

10.1016/j.sse.2010.01.006

10.1063/1.118285

10.1063/1.121999

10.1038/nature01878

10.1103/PhysRevB.78.033106

Chudnovskiy F, 2002, Future Trends in Microelectronics: The Nano Millennium, 148

10.1038/nmat2298

10.1063/1.2911745

10.1063/1.3275575

10.1109/TCT.1971.1083337

10.1038/nature06932

10.1021/nl904092h

10.1126/science.1176580

10.1063/1.1653769

10.1063/1.1654949

10.1063/1.112974

10.1063/1.2830664

10.1016/j.apsusc.2005.12.137

10.1103/PhysRevB.69.153106

10.1016/j.ssc.2006.01.006

10.1063/1.116429

10.1103/PhysRevB.76.035104

10.1063/1.2921784

10.1063/1.3291105

10.1016/0165-1633(86)90047-X

10.1063/1.2815927

10.1063/1.2177369

10.1016/S1369-7021(06)71573-5

10.1063/1.2956675

10.1063/1.3463466

10.1021/nl1002153

10.1103/RevModPhys.73.357

10.1103/RevModPhys.73.583

10.1038/nature02308

10.1126/science.1181862

10.1038/nmat2136

10.1103/PhysRevLett.102.166803

10.1103/PhysRevB.81.035111

10.1063/1.3394016

10.1103/PhysRevLett.87.237401

10.1103/PhysRevLett.99.116401

10.1103/PhysRevB.82.153401

10.1021/nl071341e