Oxidative stability of biodiesel: recent insights

Biofuels, Bioproducts and Biorefining - Tập 16 Số 1 - Trang 265-289 - 2022
Luca Longanesi1, André Prates Pereira1,2, Nigel Johnston2, Christopher J. Chuck1
1Department of Chemical Engineering, University of Bath, Bath, UK
2Department of Mechanical Engineering, University of Bath, Bath, UK

Tóm tắt

AbstractBiodiesel, the fatty acid methyl ester (FAME) of vegetable and animal oil, is now used extensively worldwide, with blends of up to 7% common. The blending level is still somewhat limited due to a perceived susceptibility of these fuels to oxidation. Oxidation follows a number of pathways, with the primary mechanism being auto‐oxidation, a radical process that results in the production of a range of oxygenated components. These eventually increase the viscosity of the fuel and form deposits detrimental to operation. Further fuel properties are also heavily reliant on the level of oxidation. As such, one of the main challenges in the use of biodiesel is its long‐term instability when stored. Typically synthetic anti‐oxidants have been used to address this issue; however, these systems can also add to the formation of deposits, as well as hazardous emissions, on combustion. Recently, research has focused on novel antioxidant development mainly from plant extracts, although there are a number of other routes for improved performance, including the commercialization of hydrogenated vegetable oil (HVO), a prominent alternative to FAME‐based biodiesel due to its higher stability, straight chain paraffin composition, and better cold flow properties. In this review, the factors that promote this oxidation are presented, including molecular composition, metal contamination, temperature and light exposure, as well as the latest findings on the inclusion of HVO, the current state‐of‐the‐art analytical techniques employed, and the impact of higher pressure injection systems on vehicles that demonstrate deposit formation is not solely due to the unsaturated biodiesel components. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd

Từ khóa


Tài liệu tham khảo

Murdock H. E.;Gibb D.;André T.;Appavou F.;Brown A.;Epp B.;Kondev B.;McCrone A.;Musolino E.;Ranalder L. Renewables 2019 global status report.2019.

10.1016/j.indcrop.2013.12.011

10.1016/j.fuel.2019.04.174

10.1016/j.fuel.2016.11.001

10.1016/j.enpol.2007.04.003

Waynick JA, 2005, NREL Documents, National Renewable Energy Laboratory

10.3846/16484142.2011.586109

10.1201/9781439822395

10.1016/j.rser.2009.10.011

10.1243/09544070JAUTO1549

10.1016/j.combustflame.2008.03.003

10.1016/j.combustflame.2009.10.013

10.1016/j.fuproc.2007.01.005

10.1016/j.fuproc.2007.01.006

Fang H. L.;McCormick R. L.Spectroscopic Study of Biodiesel Degradation Pathways; 0148–7191; SAE Technical Paper:2006.

10.1080/01430750.2014.907208

Inam S, 2019, Impacts of Derivatization on physiochemical fuel quality parameters of fatty acid methyl esters (FAME)‐a comprehensive review, Int J Chem Biochem Sci, 15, 42

10.1016/j.rser.2016.05.035

10.1016/j.fuproc.2004.11.002

10.1016/j.biortech.2008.06.039

10.1007/s11746-005-1081-6

10.18331/BRJ2018.5.3.3

10.1016/j.fuel.2012.06.014

10.1016/S1755-0408(07)01007-7

10.1111/j.1745-4522.1996.tb00074.x

10.1016/j.fuproc.2018.04.009

10.1016/j.renene.2011.07.010

10.1016/j.fuel.2016.11.080

10.1016/j.fuel.2015.05.047

10.1016/j.energy.2017.06.128

10.1016/j.fuproc.2012.05.016

10.1016/j.jclepro.2017.10.144

Dwivedi G, 2017, Experimental investigation of metals and antioxidants on oxidation stability and cold flow properties of pongamia biodiesel and its blends, Int J Renew Energy Res, 7, 26

Dwivedi G, 2014, Impact of antioxidant and metals on Biodiesel stability‐a review, J Mater Environ Sci, 5, 1412

10.1002/ente.201300072

10.5772/53655

10.3923/jas.2010.3349.3354

10.1007/s11746-011-1866-0

10.1016/j.rser.2012.03.004

10.1007/s11746-009-1489-x

10.1023/A:1016261004230

10.1134/S1062360408030016

10.1002/ejlt.200700158

10.1007/s11746-008-1263-5

10.1007/s11746-009-1502-4

10.1007/s00253-013-5345-4

10.1021/ef402411v

10.1007/s10311-015-0511-9

10.1016/j.fuproc.2014.07.045

10.1016/j.fuproc.2015.01.014

10.1016/j.fuel.2007.02.014

10.1007/s11746-001-0306-z

10.1016/j.biortech.2005.02.006

10.1186/2251-6832-4-13

10.1016/j.rser.2017.10.037

Burton R.;Biofuels P. An overview of ASTM D6751: Biodiesel standards and testing methods. Alternative Fuels Consortium2008.

10.1007/s11746-006-5033-y

Nadkarni R, 2007, Guide to ASTM Test Methods for the Analysis of Petroleum Products and Lubricants

10.1016/j.rser.2012.01.003

10.1016/j.fuproc.2012.09.001

10.1016/j.renene.2010.10.009

10.1016/j.energy.2012.05.032

10.3389/fchem.2014.00043

10.1016/j.fuel.2018.05.095

10.1016/S0961-9534(02)00085-5

10.1016/j.rser.2017.01.077

10.1016/j.bcab.2020.101514

ASTM, 2005, Standard Test Method for Cold Filter Plugging Point of Diesel And Heating Fuels. Annual Book of ASTM Standards

10.1016/j.fuproc.2012.04.018

10.1039/C5RA09555G

Dwivedi G, 2013, Cold flow behavior of Biodiesel‐a review, Int J Renew Energy Res, 3, 827

10.24084/repqj11.411

10.1016/j.renene.2011.05.032

10.13031/2013.17250

10.1016/j.fuel.2007.03.043

10.1021/acs.energyfuels.6b01343

10.1016/j.biortech.2011.05.005

Bamgboye A, 2008, Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition, Int Agrophys, 22, 21

10.1007/BF02540768

Tao Y.Operation of a cummins N14 diesel on biodiesel: Performance emissions and durability. National Biodiesel Board; Ortech Report:1995.

10.1016/S0961-9534(00)00095-7

10.1016/j.fuel.2009.05.005

10.1002/lite.200700091

AOCS FD, 1998, Official methods and recommended practices of the American oil Chemists’ Society, AOCS, 5, 2

10.1016/B978-0-08-101023-5.00010-8

10.1016/B978-0-08-102728-8.00011-5

10.1016/j.fuproc.2012.01.032

10.1016/j.fuel.2012.12.039

10.1016/j.renene.2009.08.011

10.1016/j.talanta.2011.04.002

Jääskeläinen H. Biodiesel Standards & Properties. DieselNet Technology Guide2009.

10.4271/2009-01-1828

10.1243/14680874JER00207

10.1007/s12206-016-1248-5

10.1007/s11746-003-0814-x

10.1007/BF02636102

10.1016/j.pecs.2021.100904

10.1016/j.fuel.2014.04.041

Omori T, 2011, Biodiesel Deposit Formation Mechanism and Improvement of Fuel Injection Equipment (FIE); 0148–7191

Ullmann J, 2008, Investigation into the Formation and Prevention of Internal Diesel Injector Deposits; 0148–7191

Bouilly J, 2012, Biodiesel Stability and its Effects on Diesel Fuel Injection Equipment; 0148–7191

Birgel A, 2008, Deposit Formation in the Holes of Diesel Injector Nozzles: A Critical Review; 0148–7191

10.4271/2010-01-2250

10.4271/2011-01-1944

10.4271/2012-01-1693

10.1016/j.carbon.2008.10.014

10.1177/1468087411427661

10.1016/j.energy.2014.06.006

10.1016/j.apenergy.2013.06.036

10.1007/s11746-002-0579-2

10.1016/j.rser.2016.11.217

10.1016/j.energy.2016.11.136

10.1016/j.fuel.2017.03.064

10.1177/0954407017723796

Terry B, 2006, Impact of Biodiesel blends on fuel system component durability, SAE Trans, 115, 546

10.1016/j.fuproc.2015.11.001

10.4271/2014-36-0161

Hardon H.;Zürcher K. Lebensm‐Rudsch 1974 70 57.

10.1201/9781439822357

Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels.2020.

European Committee for Standardization, 2003, Fat and Oil Derivatives: Fatty Acid Methyl Esters (FAME): Determination of Oxidation Stability (Accelerated Oxidation Test)

10.1016/j.rser.2012.06.024

10.1021/ef501118r

10.1002/cite.200403423

Berthiaume D, 2006, Study of the Rancimat Test Method in Measuring the Oxidation Stability of Biodiesel Ester and Blends

Neumann A, 2008, A method for determining oxidation stability of petrodiesel, biodiesel, and blended fuels, Am Lab, 40, 22

10.1080/15567036.2018.1520333

10.1016/j.fuel.2016.07.080

10.1021/acs.energyfuels.5b00450

Wierzbicki V, 2011, Determining the oxidation stability of biodiesel and blends using a new rapid small scale oxidation test (RSSOT)—the PetroOXY, Biofuels, 7, 102578

Machado YL, 2018, Accelerated oxidation of fresh and stored biodiesel samples obtained from castor and soybean oils using the petrooxy method, Biofuels, 12, 1

10.1016/j.tet.2013.01.034

10.1007/s10973-014-3706-6

10.4271/2014-01-2758

10.1039/b518114c

10.1002/ejlt.200501135

10.1016/j.fuel.2012.01.043

10.1016/j.fuel.2016.12.092

10.1016/j.fuel.2015.04.047

10.1021/acs.energyfuels.8b02055

10.1021/acsomega.8b03576

10.1002/ejlt.201200348

10.1016/j.cej.2006.07.014

10.1080/15567036.2017.1347731

10.1016/j.fuproc.2009.06.013

10.3390/catal9040337

Hartikka T, 2012, Technical Performance of HVO (Hydrotreated Vegetable Oil) in Diesel Engines

10.1016/j.fuel.2019.04.036

10.1021/ef070060r

10.1021/acssuschemeng.8b02523

10.1016/j.rser.2017.07.020

10.1016/j.rser.2013.10.026

10.1016/j.enconman.2014.08.034

10.1016/j.fuel.2012.06.062

10.1016/j.talanta.2011.06.008

10.1016/j.fuel.2018.09.048

10.1016/j.talanta.2019.04.030

10.1016/j.fuel.2011.03.047

Frankel EN, 1989, The antioxidant and nutritional effects of tocopherols, ascorbic acid and beta‐carotene in relation to processing of edible oils, Bibl Nutr Dieta, 43, 297

10.1093/ajcn/62.6.1315S

10.1002/ejlt.200400954

10.1016/j.fuel.2016.09.063

10.1016/j.fuel.2008.09.017

10.1016/j.fuel.2011.11.061

10.1016/j.foodres.2010.03.026

10.1007/s11746-003-0778-x

Lugasi A, 1995, Characterization of scavenging activity of natural polyphenols by chemiluminescence technique. Federation of the European Chemists’ society, Proc Eur Food Chem VIII, 3, 639

10.1111/j.1541-4337.2011.00156.x

10.1021/ef402009e

10.1016/j.fuel.2017.03.020

10.3839/jksabc.2009.078

10.1016/j.jpba.2006.02.054

Saharan P, 2012, Antioxidant Potential of Various Extracts of Stem of Thuja Orientalis: In Vitro Study, Int J Appl Biol Pharm, 3, 264

10.1016/j.fuel.2019.05.127

10.1016/j.rser.2019.109588

10.1016/j.jclepro.2020.123916

10.1016/j.jclepro.2018.03.089

10.1016/j.fuel.2014.06.007

10.1016/j.indcrop.2018.07.022

10.1016/j.fuel.2018.10.044

10.1021/jf990146l

10.1016/j.foodchem.2008.10.017

10.1021/ef2004249

10.1016/j.biortech.2013.06.048

10.1016/j.fuproc.2016.10.001

10.1016/j.fuproc.2017.05.020

10.1021/ef502893g

10.1016/j.wasman.2013.05.003

10.1021/acs.energyfuels.5b01681

10.1016/j.applthermaleng.2017.03.008

10.1016/B978-0-08-100135-6.00005-3

10.1088/1468-6996/16/3/034602

10.1016/j.fuel.2013.02.040

10.13031/2013.13321

10.1016/j.fuproc.2018.04.011

Gatto V, 1999, Effects of base oil type, oxidation test conditions and phenolic antioxidant structure on the detection and magnitude of hindered phenol/diphenylamine synergism, Tribol Lubric Technol, 55, 11

10.1016/j.foodchem.2007.06.022

Decker EA, 1998, Antioxidant mechanisms, ChemInform, 29, 1, 10.1002/chin.199847344

10.1007/s11746-009-1373-8

10.1016/j.energy.2015.03.024

10.1016/j.fuel.2018.01.086

10.1016/j.biortech.2009.05.034

10.1016/j.fuel.2010.03.041

10.1016/j.enconman.2013.07.037

10.1016/j.fuproc.2012.09.023

10.1016/j.fuel.2011.03.048

10.1016/j.enconman.2018.08.050

Batt R, 1996, Lubricity additives‐performance and no‐harm effects in low sulfur fuels, SAE Transact, 105, 1380

10.1016/j.fuel.2017.07.039

Tsesmeli C. E., 2017, Effect of Phenolic Type Antioxidant Additives on Microbial Stability of Biodiesel Fuel; 0148–7191

10.1016/j.foodcont.2012.07.047

10.1016/j.fuel.2016.07.067

Dodos GS, 2016, Effect of secondary Aldimines on the oxidation and microbial stability of biodiesel fuel, Toxicol Food Technol, 10, 41

10.1021/acs.energyfuels.0c00186

10.1021/acs.energyfuels.6b01727

Lorne D, 2020, Economic Outlook Biofuel Dashboard

Hillairet F, 2021, Greenea Horizon 2030

10.1016/j.fuel.2020.118850