Oxidative responsiveness to multiple stressors in the key Antarctic species, Adamussium colbecki: Interactions between temperature, acidification and cadmium exposure
Tài liệu tham khảo
Abele, 2004, Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish, Comp. Biochem. Physiol. (A), 138, 405, 10.1016/j.cbpb.2004.05.013
Abele, 2001, How does oxidative stress relate to thermal tolerance in the Antarctic bivalve Yoldia eightsi?, Antarct. Sci., 13, 111, 10.1017/S0954102001000189
Avio, 2015, Pollutants bioavailability and toxicological risk from microplastics to marine mussels, Environ. Pollut., 198, 211, 10.1016/j.envpol.2014.12.021
Baines, 2006, Effects of temperature on the uptake of aqueous metals by blue mussels (Mytilus edulis) from Artic and temperate waters, Mar. Ecol. Prog. Ser, 308, 117, 10.3354/meps308117
Bebianno, 2015, Integrated approach to assess ecosystem health in harbor areas, Sci. Tot. Environ., 514, 92, 10.1016/j.scitotenv.2015.01.050
Benedetti, 2012, A multidisciplinary weight of evidence approach for classifying polluted sediments: integrating sediment chemistry, bioavailability, biomarkers responses and bioassays, Environ. Intern, 38, 17, 10.1016/j.envint.2011.08.003
Benedetti, 2009, Interactions between trace metals (Cu, Hg, Ni, Pb) and 2,3,7,8- tetrachlorodibenzo-p-dioxin in the antarctic fish Trematomus bernacchii: oxidative effects on biotransformation pathway, Environ. Toxicol. Chem., 28, 818, 10.1897/08-066.1
Benedetti, 2014, Environmental hazards from natural hydrocarbons seepage: integrated classification of risk from sediment chemistry, bioavailability and biomarkers responses in sentinel species, Environ. Pollut., 185, 116, 10.1016/j.envpol.2013.10.023
Benedetti, 2007, Oxidative and modulatory effects of trace metals on metabolism of polycyclic aromatic hydrocarbons in the Antarctic fish Trematomus bernacchii, Aquat. Toxicol., 85, 167, 10.1016/j.aquatox.2007.08.009
Canapa, 2007, Vitellogenin gene expression in males of the Antarctic fish Trematomus bernacchii from Terra Nova Bay (Ross Sea): a role for environmental cadmium?, Chemosphere, 66, 1270, 10.1016/j.chemosphere.2006.07.026
Collard, 2015, Could the acid–base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?, Glob. Change Biol., 21, 605, 10.1111/gcb.12735
Constable, 2014, Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota, Glob. Change Biol., 20, 3004, 10.1111/gcb.12623
Cubillos, 2007, Calcification morphotypes of the coccolithophorid Emiliana huxleyi in the Southern Ocean: changes in 2001 to 2006 compared to historical data, Mar. Ecol. Prog. Ser., 348, 47, 10.3354/meps07058
Dean, 2010, Hypercapnia causes cellular oxidation and nitrosation in addition to acidosis: implication for CO2 chemoreceptor function and dysfunction, J. Appl. Physiol., 108, 1786, 10.1152/japplphysiol.01337.2009
Del Pino, 2014, Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: a cholinesterase dependent mechanism Javier, Toxicol, 325, 151, 10.1016/j.tox.2014.09.004
Fabry, 2009, Ocean acidification at high latitudes: the bellwether, Oceanography, 22, 160, 10.5670/oceanog.2009.105
Flynn, 2015, Ocean Acidification exerts negative effects during warming conditions in a developing Antarctic fish, Conserv. Physiol., 3, 10.1093/conphys/cov033
Harms, 2014, Gene expression profiling in gills of the great spider crab Hyas araneus in response to ocean acidification and warming, BMC Genomics, 15, 789, 10.1186/1471-2164-15-789
IPCC., 2013, Climate change 2013: the physical science basis
Ivanina, 2015, Effects of environmental hypercapnia and metal (Cd and Cu) exposure on acid-base and metal homeostasis of marine bivalves, Comp. Biochem. Physiol. C., 174–175, 1
Izagirre, 2014, Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis, Aquat. Toxicol., 149, 145, 10.1016/j.aquatox.2014.01.013
Matoo, 2013, Interactive effects of elevated temperature and CO2 levels on metabolism and oxidative stress in two common marine bivalves (Crassostrea virginica and Mercenaria mercenaria), Comp. Biochem. Physiol. (A), 164, 545, 10.1016/j.cbpa.2012.12.025
McClintock, 2009, Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification, Antarct. Sci., 21, 449, 10.1017/S0954102009990198
Moy, 2009, Reduced calcification in modern Southern Ocean planktonic foraminifera, Nat. Geosci., 2, 276, 10.1038/ngeo460
Nigro, 1997, Heavy metals in Antarctic molluscs, 408
Piva, 2011, Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: a practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays, Chemosphere, 83, 475, 10.1016/j.chemosphere.2010.12.064
Ponzano, 2001, Purification and biochemical characterization of a cadmium metallothionein from the digestive gland of the Antarctic scallop Adamussium colbecki (Smith, 1902), Polar Biol., 24, 147, 10.1007/s003000000186
Raven, 2005, 57
Regoli, 2014, Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms, Mar. Environ. Res., 93, 106, 10.1016/j.marenvres.2013.07.006
Regoli, 2011, Molecular and biochemical biomarkers in environmental monitoring: a comparison of biotransformation and antioxidant defense systems in multiple tissues, Aquat. Toxicol, 105, 56, 10.1016/j.aquatox.2011.06.014
Regoli, 2005, Interactions between metabolism of trace metals and xenobiotic agonists of the aryl hydrocarbon receptor in the Antarctic fish Trematomus bernacchii: environmental perspectives, Environ. Toxicol. Chem., 24, 1475, 10.1897/04-514R.1
Regoli, 2000, Total oxidant scavenging capacity (TOSC) of microsomal and cytosolic fractions from Antarctic, Arctic and Mediterranean scallops: differentiation between three potent oxidants, Aquat. Toxicol., 49, 13, 10.1016/S0166-445X(99)00070-3
Regoli, 2002, Seasonal variations of susceptibility to oxidative stress in Adamussium colbecki, a key bioindicator species for the Antarctic marine environment, Sci. Tot. Environ., 289, 205, 10.1016/S0048-9697(01)01047-6
Regoli, 2014, A multidisciplinary weight of evidence approach for environmental risk assessment at the Costa Concordia wreck: integrative indices from Mussel Watch, Mar. Environ. Res., 96, 92, 10.1016/j.marenvres.2013.09.016
Regoli, 1997, Biochemical characterization of the antioxidant system in the scallop Adamussium colbecki, a sentinel organism for monitoring the Antarctic environment, Polar Biol., 17, 251, 10.1007/s003000050129
Rodriguez-Romero, 2014, Predicting the impact of CO2 leakage from subseabed storage: effect of metal accumulation and toxicity on the model benthic organism Ruditapes phillipinarum, Environ. Sci. Technol., 48, 12292, 10.1021/es501939c
Seibel, 2012, Energetic plasticity underlies a variable response to ocean acidification in the pteropod Limacina helicina antarctica, PLoS ONE, 7, e30464, 10.1371/journal.pone.0030464
Sokolova, 2008, Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change, Clim. Res., 37, 181, 10.3354/cr00764
Tomanek, 2011, Proteomic response to elevated PCO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress, J. Exper. Boil, 214, 1836, 10.1242/jeb.055475
Viarengo, 1995, Pro-oxidant processes and antioxidant defence systems in the tissues of the Antarctic scallop (Adamussium colbecki) compared with the Mediterranean scallop (Pecten jacobaeus), Comp. Biochem. Physiol. (B), 111, 119, 10.1016/0305-0491(94)00228-M
Walker, 2013, Dissolution of ophiuroid ossicles on the shallow Antarctic shelf: implications for the fossil record and ocean acidification, Palaios, 28, 317, 10.2110/palo.2012.p12-100r