Oxidative proteome alterations during skeletal muscle ageing

Redox Biology - Tập 5 - Trang 267-274 - 2015
Sofia Lourenço dos Santos1,2,3, Martín A. Baraibar1,2,3, Staffan Lundberg4, Orvar Eeg‐Olofsson4, Lars Larsson5,6, Bertrand Friguet1,2,3
1CNRS UMR-8256, Paris F-75005, France
2Inserm U1164, Paris F-75005, France
3Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing-IBPS, Paris F-75005, France
4Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 82, Sweden
5Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm SE-171 77, Sweden
6Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barbieri, 2012, Reactive oxygen species in skeletal muscle signaling, J. Signal Trans., 2012, 982794

Baraibar, 2013, Expression and modification proteomics during skeletal muscle ageing, Biogerontology, 14, 339, 10.1007/s10522-013-9426-7

Powers, 2007, Oxidative stress and disuse muscle atrophy, J. Appl. Physiol., 102, 2389, 10.1152/japplphysiol.01202.2006

Pellegrino, 2011, Redox homeostasis, oxidative stress and disuse muscle atrophy, J. Physiol., 589, 2147, 10.1113/jphysiol.2010.203232

Powers, 2011, Mechanistic links between oxidative stress and disuse muscle atrophy, Antioxid. Redox Signal., 15, 2519, 10.1089/ars.2011.3973

Powers, 2012, Oxidative stress and disuse muscle atrophy: cause or consequence?, Curr. Opin. Clinical Nutr. Metab. Care, 15, 240, 10.1097/MCO.0b013e328352b4c2

Andersson, 2011, Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging, Cell Metab., 14, 196, 10.1016/j.cmet.2011.05.014

Choksi, 2008, Age-related alterations in oxidatively damaged proteins of mouse skeletal muscle mitochondrial electron transport chain complexes, Free Radic. Biol. Med., 45, 826, 10.1016/j.freeradbiomed.2008.06.006

Snow, 2007, Advanced glycation end-product accumulation and associated protein modification in Type II skeletal muscle with aging, J. Gerontol. A: Biol. Sci. Med. Sci., 62, 1204, 10.1093/gerona/62.11.1204

Thompson, 2006, Myosin and actin expression and oxidation in aging muscle, J. Appl. Physiol., 101, 1581, 10.1152/japplphysiol.00426.2006

Breusing, 2010, Biomarkers of protein oxidation from a chemical, biological and medical point of view, Exp. Gerontol., 45, 733, 10.1016/j.exger.2010.04.004

Baraibar, 2013, Oxidative proteome modifications target specific cellular pathways during oxidative stress, cellular senescence and aging, Exp. Gerontol., 48, 620, 10.1016/j.exger.2012.10.007

Baraibar, 2013, Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging, J. Proteomics, 92, 63, 10.1016/j.jprot.2013.05.008

Grune, 2001, Age-related changes in protein oxidation and proteolysis in mammalian cells, J. Gerontol. A: Biol. Sci. Med. Sci., 56, B459, 10.1093/gerona/56.11.B459

Baraibar, 2012, A mutant light-chain ferritin that causes neurodegeneration has enhanced propensity toward oxidative damage, Free Radic. Biol. Med., 52, 1692, 10.1016/j.freeradbiomed.2012.02.015

Gianni, 2004, Oxidative stress and the mitochondrial theory of aging in human skeletal muscle, Exp. Gerontol., 39, 1391, 10.1016/j.exger.2004.06.002

Pansarasa, 2000, Age and sex differences in human skeletal muscle: role of reactive oxygen species, Free Radic. Res., 33, 287, 10.1080/10715760000301451

Marzani, 2005, Human muscle aging: ROS-mediated alterations in rectus abdominis and vastus lateralis muscles, Exp. Gerontol., 40, 959, 10.1016/j.exger.2005.08.010

Barreiro, 2006, Aging, sex differences, and oxidative stress in human respiratory and limb muscles, Free Radic. Biol. Med., 41, 797, 10.1016/j.freeradbiomed.2006.05.027

Rogowska-Wrzesinska, 2013, 2D gels still have a niche in proteomics, J. Proteomics, 88, 4, 10.1016/j.jprot.2013.01.010

Baraibar, 2012, Protein oxidative damage at the crossroads of cellular senescence, aging, and age-related diseases, Oxid. Med. Cell. Longev., 2012, 1, 10.1155/2012/919832

Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3

Levine, 1990, Determination of carbonyl content in oxidatively modified proteins, Methods Enzymol., 186, 464

Baraibar, 2011, Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts, Free Radic. Biol. Med., 51, 1522, 10.1016/j.freeradbiomed.2011.06.032

Ahmed, 2010, Protein modification and replicative senescence of WI-38 human embryonic fibroblasts, Aging Cell, 9, 252, 10.1111/j.1474-9726.2010.00555.x

Shevchenko, 2006, In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat. Protoc., 1, 2856, 10.1038/nprot.2006.468

Fanò, 2001, Age and sex influence on oxidative damage and functional status in human skeletal muscle, J. Muscle Res. Cell Mot., 22, 345, 10.1023/A:1013122805060

Höök, 1999, In vitro motility speed of slow myosin extracted from single soleus fibres from young and old rats, J. Physiol., 520, 463, 10.1111/j.1469-7793.1999.00463.x

Li, 1996, Maximum shortening velocity and myosin isoforms in single muscle fibers from young and old rats, Am. J. Physiol.—Cell Physiol., 270, C352, 10.1152/ajpcell.1996.270.1.C352

Larsson, 1997, Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells, Am. J. Physiol., 272, C638, 10.1152/ajpcell.1997.272.2.C638

Höök, 2001, Effects of aging on actin sliding speed on myosin from single skeletal muscle cells of mice, rats, and humans, Am. J. Physiol.—Cell Physiol., 280, C782, 10.1152/ajpcell.2001.280.4.C782

Ramamurthy, 2013, Detection of an aging-related increase in advanced glycation end products in fast- and slow-twitch skeletal muscles in the rat, Biogerontology, 14, 293, 10.1007/s10522-013-9430-y

Li, 2015, Aberrant post-translational modifications compromise human myosin motor function in old age, Aging Cell, 14, 228, 10.1111/acel.12307

Ackermann, 2011, Myosin binding protein-C: a regulator of actomyosin interaction in striated muscle, J. Biomed. Biotechnol., 2011, 636403, 10.1155/2011/636403

Van Dijk, 2014, Earning stripes: myosin binding protein-C interactions with actin, Pflugers Arch., 466, 445, 10.1007/s00424-013-1432-8

Markus, 2012, Autosomal recessive lethal congenital contractural syndrome type 4 (LCCS4) caused by a mutation in MYBPC1, Hum. Mutat., 33, 1435, 10.1002/humu.22122

Ackermann, 2013, Loss of actomyosin regulation in distal arthrogryposis myopathy due to mutant myosin binding protein-C slow, FASEB J., 27, 3217, 10.1096/fj.13-228882

Schlossarek, 2011, Cardiac myosin-binding protein C in hypertrophic cardiomyopathy: mechanisms and therapeutic opportunities, J. Mol. Cell. Cardiol., 50, 613, 10.1016/j.yjmcc.2011.01.014

Bonne, 1998, Familial hypertrophic cardiomyopathy: from mutations to functional defects, Circ. Res., 83, 580, 10.1161/01.RES.83.6.580

Harris, 2011, In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament, Circ. Res., 108, 751, 10.1161/CIRCRESAHA.110.231670

Capitanio, 2009, Comparative proteomic profile of rat sciatic nerve and gastrocnemius muscle tissues in ageing by 2-D DIGE, Proteomics, 9, 2004, 10.1002/pmic.200701162

Gannon, 2009, Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age, Eur. J. Cell Biol., 88, 685, 10.1016/j.ejcb.2009.06.004

Gelfi, 2006, The human muscle proteome in aging, J. Proteome Res., 5, 1344, 10.1021/pr050414x

Thompson, 2006, Myosin and actin expression and oxidation in aging muscle, J. Appl. Physiol., 101, 1581, 10.1152/japplphysiol.00426.2006

Doran, 2008, Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis, Proteomics, 8, 364, 10.1002/pmic.200700475

Staunton, 2012, Mass spectrometry-based proteomic analysis of middle-aged vs. aged vastus lateralis reveals increased levels of carbonic anhydrase isoform 3 in senescent human skeletal muscle, Int. J. Mol. Med., 30, 723, 10.3892/ijmm.2012.1056

Wei, 2011, Troponin T isoforms and posttranscriptional modifications: evolution, regulation and function, Arch. Biochem. Biophys., 505, 144, 10.1016/j.abb.2010.10.013

Gomes, 2002, The role of troponins in muscle contraction. I, UBMB Life, 54, 323, 10.1080/15216540216037

Scott, 2001, Human skeletal muscle fiber type classifications, Phys. Ther., 81, 1810, 10.1093/ptj/81.11.1810

Wallimann, 1984, Function of M-line-bound creatine kinase as Intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine Shuttle in muscle, J. Biol. Chem., 259, 5238, 10.1016/S0021-9258(17)42981-4

Hornemann, 2003, Muscle-type creatine kinase interacts with central domains of the M-band proteins myomesin and M-protein, J. Mol. Biol., 332, 877, 10.1016/S0022-2836(03)00921-5

Hornemann, 2000, Isoenzyme-specific interaction of muscle-type creatine kinase with the sarcomeric M-line is mediated by NH(2)-terminal lysine charge-clamps, J. Cell Biol., 149, 1225, 10.1083/jcb.149.6.1225

Schiaffino, 2011, Fiber types in mammalian skeletal muscles, Physiol. Rev., 91, 1447, 10.1152/physrev.00031.2010

Piec, 2005, Differential proteome analysis of aging in rat skeletal muscle, FASEB J., 19, 1143, 10.1096/fj.04-3084fje

Gueugneau, 2014, Proteomics of muscle chronological ageing in post-menopausal women, BMC Genomics, 15, 1165, 10.1186/1471-2164-15-1165

Halseth, 2001, Functional limitations to glucose uptake in muscles comprised of different fiber types, Am. J. Physiol.—Endocrinol. Metab., 280, E994, 10.1152/ajpendo.2001.280.6.E994

Kishi, 1987, Human aldolase A deficiency associated with a hemolytic anemia: thermolabile aldolase due to a single base mutation, Proc. Natl. Acad. Sci. USA, 84, 8623, 10.1073/pnas.84.23.8623

Kreuder, 1996, Brief report: inherited metabolic myopathy and hemolysis due to a mutation in aldolase A, N. Engl. J. Med., 334, 1100, 10.1056/NEJM199604253341705

Nakajima, 2009, Glyceraldehyde-3-phosphate dehydrogenase aggregate formation participates in oxidative stress-induced cell death, J. Biol. Chem., 284, 34331, 10.1074/jbc.M109.027698

Sato, 2015, Glycerol 3-phosphate dehydrogenase 1 deficiency enhances exercise capacity due to increased lipid oxidation during strenuous exercise, Biochem. Biophys. Res. Commun., 457, 1, 10.1016/j.bbrc.2015.01.043

Vigelsø, 2015, GAPDH and β-actin protein decreases with aging, making stain-Free technology a superior loading control in western blotting of human skeletal muscle, J. Appl. Physiol., 118, 386, 10.1152/japplphysiol.00840.2014

MacDonald, 2000, Mouse lacking NAD+-linked glycerol phosphate dehydrogenase has normal pancreatic beta cell function but abnormal metabolite pattern in skeletal muscle, Arch. Biochem. Biophys., 384, 143, 10.1006/abbi.2000.2107

Kitaoka, 2013, Oxidative stress and Nrf2 signaling in McArdle disease, Mol. Genet. Metab., 110, 297, 10.1016/j.ymgme.2013.06.022

Kohn, 2014, McArdle disease does not affect skeletal muscle fibre type profiles in humans, Biol. Open, 3, 1224, 10.1242/bio.20149548

Katz, 2014, Regulation of glycogen breakdown and its consequences for skeletal muscle function after training, Mamm. Genome, 25, 464, 10.1007/s00335-014-9519-x

Lucia, 2008, McArdle disease: what do neurologists need to know?, Nat. Clin. Pract. Neurol., 4, 568, 10.1038/ncpneuro0913

Liu, 2006, Response and function of skeletal muscle heat shock protein 70, Front. Biosci., 11, 2802, 10.2741/2011

Doran, 2007, Aging skeletal muscle shows a drastic increase in the small heat shock proteins alphaB-crystallin/HspB5 and cvHsp/HspB7, Eur. J. Cell Biol., 86, 629, 10.1016/j.ejcb.2007.07.003

Lombardi, 2009, Defining the transcriptomic and proteomic profiles of rat ageing skeletal muscle by the use of a cDNA array, 2D- and blue native-PAGE approach, J. Proteomics, 72, 708, 10.1016/j.jprot.2009.02.007