Oxidative phosphorylation function of two mitochondrial preparations from heart: effects of ischaemia and cytochrome C
Tóm tắt
The effects ofmyocardial ischaemia on twomitochondrial preparations (polytron and nagarse) were evaluated, using three different substrates to localize the defect in the electron transport chain. Coronary artery ligation and normothermic ischaemic arrest (NICA) of the isolated working perfused rat heart were used as models of ischaemia. The results showed that, although the degree to which these two mitochondrial preparations were affected by ischaemia might differ, mitochondrial function was altered in a similar manner. After 20 min of NICA, the polytron mitochondria appeared to be more susceptible to injury than the nagarse fraction. However, coronary artery ligation for 55 min depressed the QO2 (State 3) values of polytron and nagarse mitochondria to the same extent. Moderate ischaemia (coronary artery ligation for 55 min or NICA for 20 min) depressed the oxidative phosphorylation function of both mitochondrial populations with glutamate as substrate only, indicating that the NADH-coenzyme Q region of the electron transport chain is most sensitive to ischaemic injury. As the period and severity of ischaemia increased, the rest of the electron transport chain and the phosphorylating capacity of the mitochondria became depressed. In moderate ischaemia, addition of exogenous cytochrome C caused a complete return to normal QO2 values of both mitochondrial preparations. However, in severe ischaemia (55 min NICA), although cytochrome C improved mitochondrial oxygen uptake, the values were still significantly lower than those of control hearts.
Tài liệu tham khảo
Bajusz, E.: Conditioning factor for cardiac necrosis. p. 250, Karger (Basel 1963).
Calva, E., A. Mujica, R. Nunez, K. Aoki, A. Bisteni, D. Sodi-Pallares: Mitochondrial biochemical changes and glucose-KCl-insulin solution in cardiac infarct. Amer. J. Physiol.211, 71–76 (1966).
De Francesco, L., T. E. Scheffler, M. J. Bissel: A respiration-deficient Chinese hamster cell line with a defect in NADH-Q reductase. J. Biol. Chem.251, 4588–4595 (1976).
Edoute, Y., J. C. N. Kotze, A. Lochner: Oxidative phosphorylation rate: an index for evaluation of mitochondrial function in ischaemia. J. Mol., Cell. Cardiol.11, 831–833 (1979).
Jennings, R. B., P. B. Herdson, H. M. Sommers: Structural and functional abnormalities in mitochondria isolated from ischaemic dog myocardium. Lab. Invest.20, 548–557 (1969).
Joffe, M., N. Savage, N. Isaacs: Biochemical functioning of mitochondria in normal and denervated mammalian skeletal muscle. Muscle & Nerve: In press.
Kahles, H., G. G. Göring, H. Nordbeck, C. J. Preuße, P. G. Spieckermann: Functional behaviour of isolated heart muscle mitochondria after in situ ischaemia. Basic Res. Cardiol.72, 563–574 (1977).
Kane, J. J., M. L. Murphy, J. K. Bisset, N. de Soyza, J. E. Doherty, K. D. Straub: Mitochondrial function, oxygen extraction, epicardial ST-segment changes and tritiated digoxin distribution after reperfusion of ischaemic myocardium. Amer. J. Cardiol.36, 218–224 (1975).
Krebs, H. A., K. Henseleit: Untersuchungen über die Harnstoff-Bildung im Tierkörper. Hoppe-Seylers Z. Physiol. Chem.210, 33–66 (1932).
Lamprecht, W., J. Trautschold: Adenosine-5′-triphosphate. Determination with hexokinase and glucose-6-phosphate dehydrogenase. In: Methods of Enzymatic Analysis. 2101–2110 (London 1968). Bergmeyer, H., Ed. Academic Press (London 1968).
Lindenmeyer, G. E., L. A. Sordahl, A. Schwartz: Reevaluation of oxidative phosphorylation in cardiac mitochondria from normal animals and animals in heart failure. Circulat. Res.23, 439–450 (1968).
Lochner, A., J. C. N. Kotze, A. J. S. Benade, W. Gevers: Mitochondrial oxidative phosphorylation in low-flow hypoxia: role of free fatty acids. J. Mol. Cell Cardiol.10, 857–875 (1978).
Lochner, A., L. H. Opie, P. Owen, J. C. N. Kotze, K. Bruyneel, W. Gevers: Oxidative phosphorylation in infarcting baboon and dog myocardium: effects of mitochondrial isolation and incubation media. J. Mol. Cell. Cardiol.7, 203–217 (1975).
Lowry, O. H., N. J. Rosenbrough, A. L. Farr, R. J. Randall: Protein in measurement with the folin phenol reagent. J. Biol. Chem.193, 265–275 (1951).
Ludwig, P., N. Bartels, T. Schewe, S. Rapoport: Selective inactivation of the NADH-ubiquinone segment of the respiratory chain of submitochondrial particles by endogenous free fatty acids during hyperthermia. FEBS Lett.95, 181–184 (1978).
Matlib, M. A., D. Wilson, W. Rouslin, G. Kraft, P. Berner, A. Schwartz: On the existence of two populations of mitochondria in a single organ. Respiration, calcium transport and enzyme activities. Biochem. Biophys. Res. Commun.84, 482–488 (1978).
McMillin-Wood, J., P. E. Wolkowicz, A. Chu, C. A. Tate, A. Goldstein, M. L. Entman: Calcium uptake by two preparations of mitochondria from heart. Biochim. Biophys. Acta591, 251–265 (1980).
Morgan-Hughes, J. A., P. Darveniza, D. N. Landon, J. M. Land, J. B. Clark: A mitochondrial myopathy with a deficiency of respiratory chain NADH-CoQ reductase activity. J. Neurol. Sci.43, 27–46 (1979).
Mukherjee, A., T. M. Wong, G. Templeton, L. M. Buja, J. T. Willerson: Influence of volume dilution, lactate, phosphate and calcium on mitochondrial functions. Amer. J. Physiol.237, H224-H238 (1979).
Nayler, W. G., E. Fassold, C. Yepez: Pharmacological protection of mitochondrial function in hypoxic heart muscle: effect of verapamil, propranolol and methylprednisolone. Cardiovasc. Res.12, 152–161 (1978).
Neely, J. R., H. Liebermeister, E. J. Battersby, H. E. Morgan: Effect of pressure development of oxygen consumption by isolated rat heart. Amer. J. Physiol.212, 804–814 (1967).
Opie, L. H., K. R. C. Mansford, P. Owen: Effect of increased heart work on glycolysis and adenine nucleotide in the perfused heart of normal and diabetic rats. Biochem. J.124, 475–490 (1971).
Palmer, J. W., B. Tandler, C. L. Hoppel: Biochemical properties of subsarcolemmal and intermyofibrillar mitochondria isolated from rat cardiac muscle. J. Biol. Chem.252, 8731–8739 (1977).
Rouslin, W., R. W. Millard: Canine myocardial ischaemia: defect in mitochondrial electron transfer complex I. J. Mol. Cell. Cardiol.12, 639–645 (1980).
Schewe, T., P. Ludwig, S. Rapoport: On a slow inhibitory effect of free fatty acids on the respiratory chain of non-phosphorylating submitochondrial particles from beef heart. FEBS Lett.46, 39–41 (1974).
Schwartz, A., J. M. Wood, J. C. Allen, E. P. Bornet, M. L. Entman, M. A. Goldstein, L. A. Sordahl, M. Suzuki: Biochemical and morphological correlates of cardiac ischaemia. Amer. J. Cardiol.32, 46–61 (1973).
van Handel, P. J., W. R. Sandel, P. A. Mole: Effects of exogenous cytochrome C on respiratory capacity of heart and skeletal muscle mitochondria. Biochem. Biophys. Res. Commun.74, 1213–1219 (1977).
van Jaarsveld, H., A. Lochner, D. A. Sanan, D. B. Graney: Analysis of the effect of different isolation procedures on the ultrastructure, function and yield of rat heart mitochondria. S. Afr. J. Sci.77, 28–33 (1981).
Weishaar, R., K. Ashikawa, R. J. Bing: Effect of diltiazem, a calcium antagonist, on myocardial ischaemia. Amer. J. Cardiol.43, 1137–1143 (1979).
Weishaar, R., J. S. M. Sarma, Y. Maruyama, R. Fisher, R. J. Bing: Regional blood flow, contractility and metabolism in early myocardial infarction. Cardiology62, 2–20 (1977).