Oxidative dissolution of iron monosulfide (FeS) in acidic conditions: The effect of solid pretreatment

International Journal of Mineral Processing - Tập 135 - Trang 57-64 - 2015
Paul Chiriţă1, Michel L. Schlegel2,3
1University of Craiova (St. A. I. Cuza No.13, Craiova, România - Romania)
2LAMBE - Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (Bât. Mapertuis 1° étage bd François Mitterrand 91025 EVRY CEDEX - France)
3LISL - laboratoire d'ingénierie des surfaces et lasers (CEA Saclay DEN/DANS/DPC/SEARS/LISL - France)

Tóm tắt

Từ khóa


Tài liệu tham khảo

Behum, 2011, Remediation of coal-mine drainage by a sulfate-reducing bioreactor: a case study from the Illinois coal basin, Appl. Geochem., 26, S162, 10.1016/j.apgeochem.2011.03.093

Belzile, 2004, A review on pyrrhotite oxidation, J. Geochem. Explor., 84, 65, 10.1016/j.gexplo.2004.03.003

Cai, 2005, The passivation of pyrrhotite by surface coating, Chemosphere, 61, 659, 10.1016/j.chemosphere.2005.03.032

Chirita, 2006, Anoxic dissolution of troilite in acidic media, J. Colloid Interface Sci., 294, 376, 10.1016/j.jcis.2005.07.047

Chirita, 2012, Reaction of FeS with Fe(III)-bearing acidic solutions, Chem. Geol., 334, 131, 10.1016/j.chemgeo.2012.10.015

Chirita, 2008, Oxidation of FeS by oxygen-bearing acidic solutions, J. Colloid Interface Sci., 321, 84, 10.1016/j.jcis.2008.01.024

Coughlin, 1950, High-temperature heat contents of manganeous sulfide, ferrous sulfide and pyrite, J. Am. Chem. Soc., 72, 5445, 10.1021/ja01168a021

Evangelou, 1998, Potential role of bicarbonate during pyrite oxidation, Environ. Sci. Technol., 32, 2084, 10.1021/es970829m

Ghahremaninezhad, 2010, In situ electrochemical analysis of surface layers on a pyrrhotite electrode in hydrochloric acid solution, J. Electrochem. Soc., 157, C248, 10.1149/1.3421714

Ghahremaninezhad, 2010, Electrochemical evaluation of the surface of chalcopyrite during dissolution in sulfuric acid solution, Electrochim. Acta, 55, 5041, 10.1016/j.electacta.2010.03.052

Giaveno, 2011, The influence of two thermophilic consortia on troilite (FeS) dissolution, Hydrometallurgy, 106, 19, 10.1016/j.hydromet.2010.11.015

Hu, 2006, Decomposition and oxidation of pyrite, Prog. Energy Combust., 32, 295, 10.1016/j.pecs.2005.11.004

Janzen, 2000, Pyrrhotite reaction kinetics: reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution, Geochim. Cosmochim. Acta, 64, 1511, 10.1016/S0016-7037(99)00421-4

Lasia, 1999, Electrochemical impedance spectroscopy and its applications, vol. 32, 143

Lehner, 2008, Electrochemical impedance spectroscopy of synthetic pyrite doped with As, Co and Ni, J. Electrochem. Soc., 155, P61, 10.1149/1.2885103

Liu, 2011, Utilization of electrochemical impedance spectroscopy for monitoring pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans, Miner. Eng., 24, 833, 10.1016/j.mineng.2011.03.002

Mikhlin, 2005, Pristine and reacted surfaces of pyrrhotite and arsenopyrite as studied by X-ray absorption near-edge structure spectroscopy, Phys. Chem. Miner., 32, 19, 10.1007/s00269-004-0436-5

Mikhlin, 2002, Spectroscopic and XRD studies of the air degradation of acid-reacted pyrrhotites, Geochim. Cosmochim. Acta, 66, 4057, 10.1016/S0016-7037(02)00989-4

Mikhlin, 2003, Thermal decomposition of a nonequilibrium, nonstoichiometric layer on pyrrhotite, Russ. J. Inorg. Chem., 48, 897

Moncur, 2009, Mine drainage from the weathering of sulfide minerals and magnetite, Appl. Geochem., 24, 2362, 10.1016/j.apgeochem.2009.09.013

Mycroft, 1995, X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite: distribution of oxidized species with depth, Geochim. Cosmochim. Acta, 59, 721, 10.1016/0016-7037(94)00352-M

Nacu, 1988

Pattrick, 1998, Lead sorption on the surface of ZnS with relevance to flotation: a fluorescence REFLEXAFS study, Miner. Eng., 11, 1025, 10.1016/S0892-6875(98)00090-9

Pedoussaut, 2008, Facile synthesis of troilite, Inorg. Chem., 47, 392, 10.1021/ic701636h

Pratt, 1997, Pyrrhotite leaching in acid mixtures of HCl and H2SO4, Am. J. Sci., 297, 807, 10.2475/ajs.297.8.807

Pratt, 1994, Generation of acids from mine waste: oxidative leaching of pyrrhotite in dilute H2SO4 solutions at pH3.0, Geochim. Cosmochim. Acta, 58, 5147, 10.1016/0016-7037(94)90300-X

Pratt, 1994, X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation, Geochim. Cosmochim. Acta, 58, 827, 10.1016/0016-7037(94)90508-8

Rickard, 2006, The composition of nanoparticulate mackinawite, tetragonal iron(II) monosulfide, Chem. Geol., 235, 286, 10.1016/j.chemgeo.2006.07.004

Sand, 2001, (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching, Hydrometallurgy, 59, 159, 10.1016/S0304-386X(00)00180-8

Skinner, 2004, XPS identification of bulk hole defects and itinerant Fe 3d electrons in natural troilite (FeS), Geochim. Cosmochim. Acta, 68, 2259, 10.1016/j.gca.2003.11.026

Tao, 2003, Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes, Electrochim. Acta, 48, 3615, 10.1016/S0013-4686(03)00482-1

Thomas, 1998, The role of surface sulfur species in the inhibition of pyrrhotite dissolution in acid conditions, Geochim. Cosmochim. Acta, 62, 1555, 10.1016/S0016-7037(98)00087-8

Thomas, 2001, A mechanism to explain sudden changes in rates and products for pyrrhotite dissolution in acid solution, Geochim. Cosmochim. Acta, 65, 1, 10.1016/S0016-7037(00)00503-2

Thomas, 2003, A comparison of the dissolution behavior of troilite with other iron(II) sulfides; implications of structure, Geochim. Cosmochim. Acta, 67, 831, 10.1016/S0016-7037(02)01146-8

Velásquez, 2005, A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions, J. Phys. Chem. B, 109, 4977, 10.1021/jp048273u

Weerasooriya, 2010, Probing reactivity sites on pyrite-oxidative interactions with 4-chlorophenol, Colloids Surf. A Physicochem. Eng. Asp., 367, 65, 10.1016/j.colsurfa.2010.06.023

Yani, 2010, An experimental study of sulphate transformation during pyrolysis of an Australian lignite, Fuel Process. Technol., 91, 313, 10.1016/j.fuproc.2009.11.002