Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Algorithms of Specialized Medical Care for Patients with Diabetes Mellitus. Dedov II, Shestakova MV, Maioriv AYu, eds. Moscow, 2019. Russian.
Barysheva EV. Change parameters prooxidant-antioxidant system while reducing the concentration of deuterium in laboratory animals with alloxan diabetes. Fundament. Issled. 2015;(1-3):457-461. Russian.
Belkina LM, Smirnova EA, Terekhina OL, Kruglov SV, Boichuk ES. Role of nitric oxide in the pathogenesis of alloxan diabetes. Bull. Exp. Biol. Med. 2013;154(5):602-605. doi: https://doi.org/10.1007/s10517-013-2009-4
Blagonravov ML, Sklifasovskaya AP, Korshunova AY, Azova MM, Kurlaeva AO. Heat Shock Protein HSP60 in Left Ventricular Cardiomyocytes of Hypertensive Rats with and without Insulin-Dependent Diabetes Mellitus. Bull. Exp. Biol. Med. 2021;170(1):10-14. doi: https://doi.org/10.1007/s10517-020-04994-4
Volchegorskii IA, Rassokhina LM, Miroshnichenko IY. Dynamics of lipid peroxidation-antioxidant defense system during alloxan diabetes in rats. Bull. Exp. Biol. Med. 2013;155(1):26-29. doi: https://doi.org/10.1007/s10517-013-2071-y
Dzugkoev SG, Kaloeva MB, Dzugkoeva FS. Effect of combination therapy with coenzyme Q10 on functional and metabolic parameters in patients with type 1 diabetes mellitus. Bull. Exp. Biol. Med. 2012;152(3):364-366. doi: https://doi.org/10.1007/s10517-012-1529-7
Dzugkoev SG, Metel’skaya VA, Dzugkoeva FS. Effects of endogenous regulators of endothelial NO synthase on nitric oxide homeostasis and blood serum lipoproteins during experimental diabetes mellitus. Bull. Exp. Biol. Med. 2014;156(2):205-208. doi: https://doi.org/10.1007/s10517-013-2311-1
Kolesnikova LI, Darenskaya MA, Kolesnikov SI. Free radical oxidation: a pathophysiologist’s view. Byull. Sib. Med. 2017;16(4):16-29. Russian.
Kukes VG, Parfenova OK, Romanov BK, Prokofiev AB, Parfenova EV, Sidorov NG, Gazdanova AA, Pavlova LI, Zozina VI, Andreev AD, Aleksandrova TV, Chernova SV, Ramenskaya GV. The mechanism of action of ethoxidol on oxidative stress indices in heart failure and hypotension. Sovremen. Tekhnol. Med. 2020;12(2):67-73. doi: 10.17691/stm2020.12.2.08
Lankin VZ, Tikhaze AK. Free radical processes play an important role in the etiology and pathogenesis of atherosclerosis and diabetes. Kardiologiya. 2016;56(12):97-105. Russian.
Zhernakova YuV, Zheleznova EA, Chazova IE, Oshchepkova EV, Dolgusheva YuA, Yarovaya EB, Blinova NV, Orlovsky AA, Konosova ID, Shalnova SA, Rotar’ OP, Konradi AO, Shlyakhto EV, Boytsov SA. The prevalence of abdominal obesity and the association with socioeconomic status in Regions of the Russian Federation, the results of the epidemiological study–ESSE-RF. Ter. Arkh. 2018;90(10):46-50. doi: 10.26442/terarkh201890104-50
Mikaelian NP, Gurina AE, Terent’ev AA. Dysfunction of membrane-receptor system of blood cells and kidney tissue in experimental diabetes mellitus. Bull. Exp. Biol. Med. 2013;154(5):610-613. doi: https://doi.org/10.1007/s10517-013-2011-x
Mikaelyan NP, Dvornikov AS, Mikaelyan AA, Smirnova NV. Association between Disturbances in Polyunsaturated Fatty Acid Metabolism and Development of Oxidative Stress during Experimental Diabetes Mellitus. Bull. Exp. Biol. Med. 2019;167(3):343-346. doi: https://doi.org/10.1007/s10517-019-04523-y
Mozheyko LA. Experimental models for studying diabetes mellitus part 1. Alloxan diabetes. Zh. Grodnensk. Gos. Med. Univer. 2013;(3):26-29. Russian.
Proskurnina EV, Polimova AM, Sozarukova MM, Prudnikova MA, Ametov AS, Vladimirov YA. Kinetic Chemiluminescence as a Method for Oxidative Stress Evaluation in Examinations of Patients with Type 2 Diabetes Mellitus. Bull. Exp. Biol. Med. 2016;161(1):131-133. doi: https://doi.org/10.1007/s10517-016-3362-x
Samotrueva MA, Sergalieva MU. Diabetes mellitus: features of experimental modelling. Astrakhan. Med. Zh. 2019;14(3):45-57. Russian.
Skliarova EI, Popova TN, Shulgin KK. Effects of N-[Imino(1-Piperidinyl)Methyl] Guanidine on the Intensity of Free Radical Processes, Aconitase Activity, and Citrate Level in the Tissues of Rats with Experimental Type 2 Diabetes Mellitus. Bull. Exp. Biol. Med. 2016;161(2):261-265. doi: https://doi.org/10.1007/s10517-016-3391-5
Smirnov LD, Inchina VI, Kostin JV, Kokoreva EV, Bogoljubova ZV. Possible pharmacological correction of metabolic impairments experimental diabetes mellitus by antioxidant. Biomed. Khimiya. 2004;50(5):502-508. Russian.
Tsakanova GV, Ayvazyan VA, Boyajyan AS, Arakelova EA, Grigoryan GS, Guevorkyan AA, Mamikonyan AA. A comparative study of antioxidant system and intensity of lipid peroxidation in type 2 diabetes mellitus and ischemic stroke aggravated and not aggravated by type 2 diabetes mellitus. Bull. Exp. Biol. Med. 2011;151(5):564-566. doi: https://doi.org/10.1007/s10517-011-1383-z
Chernikov AA, Severina AS, Shamhalova MS, Shestakova MV. The role of “metabolic memory” mechanisms in the development and progression of vascular complications of diabetes mellitus. Sakhar. Diabet. 2017;20(2):126-134. Russian.
Chistyakova OV, Sukhov IB, Shpakov AO. The role of oxidative stress and antioxidant enzymes in the development of diabetes mellitus. Ross. Fiziol. Zh. 2017;103(9):987-1003.Russian.
Elbekyan KS, Myraveva AB, Pazhitneva EV. Effect of melatonin on oxidative stress andindicators of the element of balance in experimental diabetes. Fundament. Issled. 2013;(9-1):178-181. Russian.
Yashanova MI, Shcherbatyuk TG, Nikolaev VYu. Validity of the models of experimental diabetes for oxidative stress studies. Zh. Med.-Biol. Issled. 2019;7(1):66-78. doi: 10.17238/issn2542-1298.2019.7.1.66
Aju BY, Rajalakshmi R, Mini S. Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Heliyon. 2019;5(12):e02935. doi: https://doi.org/10.1016/j.heliyon.2019.e02935
Alghazeer R, Alghazir N, Awayn N, Ahtiwesh O, Elgahmasi S. Biomarkers of oxidative stress and antioxidant defense in patients with type 1 diabetes mellitus. Ibnosina J. Med. Biomed. Sci. 2018;10(6):198. doi: https://doi.org/10.4103/ijmbs.ijmbs_59_18
Alghobashy AA, Alkholy UM, Talat MA, Abdalmonem N, Zaki A, Ahmed IA, Mohamed RH. Trace elements and oxidative stress in children with type 1 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2018;11:85-92. doi: https://doi.org/10.2147/DMSO.S157348
Aouacheri O, Saka S, Krim M, Messaadia A, Maidi I. The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can. J. Diabetes. 2015;39(1):44-49. doi: https://doi.org/10.1016/j.jcjd.2014.03.002
Asadipooya K, Uy EM. Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: review of the literature. J. Endocr. Soc. 2019;3(10):1799-1818. doi: https://doi.org/10.1210/js.2019-00160
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress — a concise: review. Saudi Pharm. J. 2016;24(5):547-553. doi: https://doi.org/10.1016/j.jsps.2015.03.013
Bensellam M, Laybutt DR, Jonas JC. The molecular mechanisms of pancreatic β-cell glucotoxicity: recent findings and future research directions. Mol. Cell. Endocrinol. 2012;364(1-2):1-27. doi: https://doi.org/10.1016/j.mce.2012.08.003
Bigagli E, Lodovici M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications. Oxidative Med.Cell. Longev. 2019;2019:5953685. doi: https://doi.org/10.1155/2019/5953685
Bulboaca AE, Boarescu PM, Porfire AS, Dogaru G, Barbalata C, Valeanu M, Munteanu C, Râjnoveanu RM, Nicula CA, Stanescu IC. The effect of nano-epigallocatechin-gallate on oxidative stress and matrix metalloproteinases in experimental diabetes mellitus. Antioxidants (Basel). 2020;9(2):172. doi: https://doi.org/10.3390/antiox9020172
Burgos-Morón E, Abad-Jiménez Z, Marañón AM, Iannantuoni F, Escribano-López I, López-Domènech S, Salom C, Jover A, Mora V, Roldan I, Solá E, Rocha M, Víctor VM. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: the battle continues. J. Clin. Med. 2019;8(9):1385. doi: https://doi.org/10.3390/jcm8091385
Ceriello A, Testa R, Genovese S. Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr. Metab. Cardiovasc. Dis. 2016;26(4):285-292. doi: https://doi.org/10.1016/j.numecd.2016.01.006
Chandra K, Singh P, Dwivedi S, Jain SK. Diabetes mellitus and oxidative stress: a co-relative and therapeutic approach. J. Clin. Diagn. Res. 2019;13(5):BE07-BE12. doi: https://doi.org/10.7860/JCDR/2019/40628.12878
Daniels MC, McClain DA, Crook ED. Transcriptional regulation of transforming growth factor β1 by glucose: investigation into the role of the hexosamine biosynthesis pathway. Am. J. Med. Sci. 2020;359(2):79-83. doi: https://doi.org/10.1016/j.amjms.2019.12.013
Darenskaya MA, Grebenkina LA, Semenova NV, Gnusina SV, Kolesnikov SI, Kolesnikova LI. The use of integral indicator of oxidative stress in women with diabetes mellitus. Diabetes Technol. Therapeutics. 2018;20(1):143-144.
Darenskaya MA, Shemyakina NA, Namokonov EV, Semenova NV, Kolesnikov SI, Kolesnikova LI. Glyoxal, metilglyoxal and malonic dialdehyde levels in patients with diabetes mellitus and microangiopathy of the lower extremities in the course of recommended therapy with added N-acetylcysteine. Diabetes Technol. Therapeutics. 2020;22(S1):760.
Dariya B, Nagaraju GP. Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discov. Today. 2020;25(9):1614-1623. doi: https://doi.org/10.1016/j.drudis.2020.07.003
Duvvuri LS, Katiyar S, Kumar A, Khan W. Delivery aspects of antioxidants in diabetes management. Expert Opin. Drug Deliv. 2015;12(5):827-844. doi: https://doi.org/10.1517/17425247.2015.992413
Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 2018;122(6):877-902. doi: https://doi.org/10.1161/CIRCRESAHA.117.311401
Gawlik K, Naskalski JW, Fedak D, Pawlica-Gosiewska D, Grudzień U, Dumnicka P, Małecki MT, Solnica B. Markers of antioxidant defense in patients with type 2 diabetes. Oxid. Med. Cell. Longev. 2016;2016:2352361. doi: https://doi.org/10.1155/2016/2352361
Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxidants Redox Signaling. 2017;26(10):501-518. doi: https://doi.org/10.1089/ars.2016.6755
Ghasemi-Dehnoo M, Amini-Khoei H, Lorigooini Z, Rafieian-Kopaei M. Oxidative stress and antioxidants in diabetes mellitus. Asian Pac. J. Trop. Med. 2020;13(10):431-438. doi: https://doi.org/10.4103/1995-7645.291036
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010;107(9):1058-1070. doi: https://doi.org/10.1161/CIRCRESAHA.110.223545
Grama CN, Suryanarayana P, Patil MA, Raghu G, Balakrishna N, Kumar MN, Reddy GB. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model. PLoS One. 2013;8(10):e78217. doi: https://doi.org/10.1371/journal.pone.0078217
Gray SP, Jha JC, Kennedy K, van Bommel E, Chew P, Szyndralewiez C, Touyz RM, Schmidt HHHW, Cooper ME, Jandeleit- Dahm KAM. Combined NOX1/4 inhibition with GKT137831 in mice provides dosedependent reno- and atheroprotection even in established micro- and macrovascular disease. Diabetologia 2017;60(5):927-937. doi: https://doi.org/10.1007/s00125-017-4215-5
Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1):3-16. doi: https://doi.org/10.1007/s00125-018-4711-2
Holley CT, Duffy CM, Butterick TA, Long EK, Lindsey ME, Cabrera JA, Ward HB, McFalls EO, Kelly RF. Expression of uncoupling protein-2 remains increased within hibernating myocardium despite successful coronary artery bypass grafting at 4 wk post-revascularization. J. Surg. Res. 2015;193(1):15-21. doi: https://doi.org/10.1016/j.jss.2014.08.003
Hoseini A, Namazi G, Farrokhian A, Reiner Ž, Aghadavod E, Bahmani F, Asemi Z. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Food Function. 2019;10(9):6042-6051. doi: https://doi.org/10.1039/c9fo01075k
Hussein L, Gaetani S, Mousa SG, D’Evoli L, Hussein N. Dyslipidemia and other risk factors among Egyptian patients with type-2 diabetes mellitus and the impact of dietary intervention with thermally treated tomato juice. Int. J. Clin. Nutr. Diet. 2018;4. https://doi.org/10.15344/2456-8171/2018/128
Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother. 2018;108:656-662. doi: https://doi.org/10.1016/j.biopha.2018.09.058
Jiao W, Ji J, Li F, Guo J, Zheng Y, Li S, Xu W. Activation of the NotchNox4 reactive oxygen species signaling pathway induces cell death in high glucosetreated human retinal endothelial cells. Mol. Med. Rep. 2019;19(1):667-677. doi: https://doi.org/10.3892/mmr.2018.9637
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020;37:101799. doi: https://doi.org/10.1016/j.redox.2020.101799
Kanikarla-Marie P, Jain SK. Hyperketonemia (acetoacetate) upregulates NADPH oxidase 4 and elevates oxidative stress, ICAM-1, and monocyte adhesivity in endothelial cells. Cell. Physiol. Biochem. 2015;35(1):364-373. doi: https://doi.org/10.1159/000369702
Kolesnikova LI, Darenskaya MA, Grebenkina LA, Gnusina SV, Kolesnikov SI. Oxidative stress in type 1 diabetes mellitus: ethnic aspects. Free Radicals, Antioxidants and Diseases. Rizwan A, ed. Rijeka, 2018. P. 65-72. doi: https://doi.org/10.5772/intechopen.70075
Kolesnikova LI, Darenskaya MA, Grebenkina LA, Gnusina SV, Kolesnikov SI. Ethnic aspects of lipid peroxidation process flow in patients with type 1 diabetes mellitus. Diabetes Technol. Therapeutics. 2019;21(Suppl. 1):133.
Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Semenova NV, Osipova EV, Gnusina SV, Bardymova TA. Lipid status and predisposing genes in patients with diabetes mellitus type 1 from various ethnic groups. Bull. Exp. Biol. Med. 2015;160(2):278-280. doi: https://doi.org/10.1007/s10517-015-3149-5
Kolesnikova LI, Shemyakina NA, Namokonov EV, Darenskaya MA, Grebenkina LA, Kolesnikov SI. Some parameters of carbonyl and oxidative stress in patients with type 2 diabetes mellitus and macroangiopathy of the lower extremities. Diabetes Technol. Therapeutics. 2019;21(Suppl. 1):46.
Kolesnikova LI, Vlasov BY, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Semenova NV, Vanteeva OA. Intensity of oxidative stress in Mongoloid and Caucasian patients with type 1 diabetes mellitus. Bull. Exp. Biol. 2016;161(6):767-769. doi: https://doi.org/10.1007/s10517-016-3505-0
Kowluru RA. Mitochondria damage in the pathogenesis of diabetic retinopathy and in the metabolic memory associated with its continued progression. Curr. Med. Chem. 2013;20(26):3226-3233. doi: https://doi.org/10.2174/09298673113209990029
Krog S, Ludvigsen TP, Nielsen OL, Kirk RK, Lykkegaard K, Wulff EM, Møller JE, Pedersen HD, Olsen LH. Myocardial changes in diabetic and nondiabetic nonhuman primates. Vet. Pathol. 2020;57(2):332-343. doi: https://doi.org/10.1177/0300985820901332
Langlais P, Yi Z, Finlayson J, Luo M, Mapes R, De Filippis E, Meyer C, Plummer E, Tongchinsub P, Mattern M, Mandarino LJ. Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia. 2011;54(11):2878-2889. doi: https://doi.org/10.1007/s00125-011-2271-9
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ES. Paradoxical roles of antioxidant enzymes: Basic mechanisms and health implications. Physiol. Rev. 2016;96(1):307-364. doi: https://doi.org/10.1152/physrev.00010.2014
Liu J, Li X, Cai R, Ren Z, Zhang A, Deng F, Chen D. Simultaneous study of anti-ferroptosis and antioxidant mechanisms of butein and (S)-butin. Molecules. 2020;25(3):674. doi: https://doi.org/10.3390/molecules25030674
Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: a mini review. Curr. Diabetes Rev. 2017;13(1):3-10. doi: https://doi.org/10.2174/1573399812666151016101622
Maleki V, Foroumandi E, Hajizadeh-Sharafabad F, Kheirouri S, Alizadeh M. The effect of resveratrol on advanced glycation end products in diabetes mellitus: a systematic review. Arch. Physiol. Biochem. 2020;(3):1-8. doi: https://doi.org/10.1080/13813455.2019.1673434
Mason SA, Della Gatta PA, Snow RJ, Russell AP, Wad- ley GD. Ascorbic acid supplementation improves skeletal muscle oxidative stress and insulin sensitivity in people with type 2 diabetes: Findings of a randomized controlled study. Free Radic. Biol. Med. 2016;93:227-238. doi: 10.1016/j.freeradbiomed.2016.01.006
Mehta MM, Weinberg SE, Chandel NS. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol. 2017;17(10):608-620. doi: https://doi.org/10.1038/nri.2017.66
Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci. 2018;63(1):68-78. doi: https://doi.org/10.1016/j.advms.2017.05.005
Mistry KN, Dabhi BK, Joshi BB. Evaluation of oxidative stress biomarkers and inflammation in pathogenesis of diabetes and diabetic nephropathy. Indian J. Biochem. Biophys. (IJBB). 2020;57(1):45-50.
Mukhtar MH, El-Emshaty HM, Alamodi HS, Nasif WA. The activity of serum 8-iso-prostaglandin F2α as oxidative stress marker in patients with diabetes mellitus type 2 and associated dyslipidemic hyperglycemia. J. Diabetes Mellitus. 2016;6(4):318-332. doi: https://doi.org/10.4236/jdm.2016.64033
Nasri H, Shirzad H, Baradaran A, Rafieian-Kopaei M. Antioxidant plants and diabetes mellitus. J. Res. Med. Sci. 2015;20(5):491-502. doi: 10.4103/1735-1995.163977
Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019;11(3):45-63.
Oxidative Stress. Eustress and Distress. Sies H, ed. Academic Press, 2020.
Ozougwu JC. The role of reactive oxygen species and antioxidants in oxidative stress. Int. J. Res. Pharm. Biosci. 2016;3(6):1-8.
Pavithra D, Praveen D, Chowdary PR, Aanandhi MV. A review on role of vitamin E supplementation in type 2 diabetes mellitus. Drug Invent. Today. 2018;10(2):236-240.
Peng JJ, Xiong SQ, Ding LX, Peng J, Xia XB. Diabetic retinopathy: focus on NADPH oxidase and its potential as therapeutic target. Eur. J. Pharmacol. 2019;853:381-387. doi: https://doi.org/10.1016/j.ejphar.2019.04.038
Pickering RJ, Rosado CJ, Sharma A, Buksh S, Tate M, de Haan JB. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clin. Transl. Immunology. 2018;7(4):e1016. doi: https://doi.org/10.1002/cti2.1016
Pivari F, Mingione A, Brasacchio C, Soldati L. Curcumin and type 2 diabetes mellitus: prevention and treatment. Nutrients. 2019;11(8):1837. doi: https://doi.org/10.3390/nu11081837
Rahimi-Madiseh M, Malekpour-Tehrani A, Bahmani M, Rafieian-Kopaei M. The research and development on the antioxidants in prevention of diabetic complications. Asian Pac. J. Trop. Med. 2016;9(9):825-831. doi: https://doi.org/10.1016/j.apjtm.2016.07.001
Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem. 2004;279(41):42351-42354. doi: https://doi.org/10.1074/jbc.R400019200
Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab. Syndr. 2018;12(3):455-462. doi: https://doi.org/10.1016/j.dsx.2017.12.029
Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta. 2014;1840(9):2709-2729. doi: https://doi.org/10.1016/j.bbagen.2014.05.017
Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 2006;212(2):167-178. doi: https://doi.org/10.1016/j.taap.2006.01.003
Roohbakhsh A, Karimi G, Iranshahi M. Carotenoids in the treatment of diabetes mellitus and its complications. Biomed. Pharmacother. 2017;91:31-42. doi: https://doi.org/10.1016/j.biopha.2017.04.057
Rosta V, Trentini A, Passaro A, Zuliani G, Sanz JM, Bosi C, Bonaccorsi G, Bellini T, Cervellati C. Sex difference impacts on the relationship between paraoxonase-1 (PON1) and type 2 diabetes. Antioxidants. 2020;9(8):683. doi: https://doi.org/10.3390/antiox9080683
Saeedi Borujeni MJ, Esfandiary E, Baradaran A, Valiani A, Ghanadian M, Codoñer-Franch P, Basirat R, Alonso-Iglesias E, Mirzaei H, Yazdani A. Molecular aspects of pancreatic β-cell dysfunction: oxidative stress, microRNA, and long noncoding RNA. J. Cell. Physiol. 2019;234(6):8411-8425. doi: https://doi.org/10.1002/jcp.27755
Schrammel A, Mussbacher M, Winkler S, Haemmerle G, Stessel H, Wölkart G, Zechner R, Mayer B. Cardiac oxidative stress in a mouse model of neutral lipid storage disease. Biochim. Biophys. Acta. 2013;1831(11):1600-1608. doi: https://doi.org/10.1016/j.bbalip.2013.07.004
Selvin E, Juraschek SP. Diabetes epidemiology in the COVID-19 pandemic. Diabetes Care. 2020;43(8):1690-1694. doi: https://doi.org/10.2337/dc20-1295
Serhiyenko V, Hotsko M, Serhiyenko A, Snitynska O, Serhiyenko L, Segin V. The impact of alpha-lipoic acid on insulin resistance and inflammatory parameters in patients with type 2 diabetes mellitus and cardiac autonomic neuropathy. Am. J. Int. Med. 2020;8(5):197-203. doi: 10.11648/j.ajim.20200805.11
Sies H. Oxidative stress: concept and some practical aspects. Antioxidants (Basel). 2020;9(9):852. doi: https://doi.org/10.3390/antiox9090852
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21(7):363-383. doi: https://doi.org/10.1038/s41580-020-0230-3
Sifuentes-Franco S, Pacheco-Moisés FP, Rodríguez-Carrizalez AD, Miranda-Díaz AG. The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J. Diabetes Res. 2017;2017:1673081. doi: https://doi.org/10.1155/2017/1673081
Sifuentes-Franco S, Padilla-Tejeda DE, Carrillo-Ibarra S, Miranda-Díaz AG. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int. J. Endocrinol. 2018;2018. ID 1875870. doi: 10.1155/2018/1875870
Tavakoli M, Gogas Yavuz D, Tahrani A.A, Selvarajah D, Bowling F.L, Fadavi H. Diabetic neuropathy: current status and future prospects. J. Diabetes Res. 2017;2017:5825971. doi: https://doi.org/10.1155/2017/5825971
Testa R, Bonfigli AR, Prattichizzo F, La Sala L, De Nigris V, Ceriello A. The “metabolic memory” theory and the early treatment of hyperglycemia in prevention of diabetic complications. Nutrients. 2017;9(5):437. doi: https://doi.org/10.3390/nu9050437
Wang J, Wang H. Oxidative stress in pancreatic beta cell regeneration. Oxid. Med. Cell. Longev. 2017;2017:1930261. doi: https://doi.org/10.1155/2017/1930261
Wang X, Tao L, Hai CX. Redox-regulating role of insulin: the essence of insulin effect. Mol. Cell. Endocrinol. 2012;349(2):111-127. doi: https://doi.org/10.1016/j.mce.2011.08.019
Xiao L, Xu X, Zhang F, Wang M, Xu Y, Tang D, Wang J, Qin Y, Liu Y, Tang C, He L, Greka A, Zhou Z, Liu F, Dong Z, Sun L. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol. 2017;11:297-311. doi: https://doi.org/10.1016/j.redox.2016.12.022
Yin Y, Zheng Z, Jiang Z. Effects of lycopene on metabolism of glycolipid in type 2 diabetic rats. Biomed. Pharmacother. 2019;109:2070-2077. doi: https://doi.org/10.1016/j.biopha.2018.07.100
Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front. Med. 2020;14(5):583-600. doi: https://doi.org/10.1007/s11684-019-0729-1
Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 2015;20(12):21138-21156. doi: https://doi.org/10.3390/molecules201219753