Oxidation state, local structure distortion, and defect structure analysis of Cu doped α-MnO2 correlated to conductivity and dielectric properties
Tài liệu tham khảo
Liu, 2018, Advanced energy storage devices: basic principles, analytical methods, and rational materials design, Adv. Sci., 1700322, 5
Wang B. Nanostructured transition metal oxide materials for supercapacitor application n.d.:106.
Forouzandeh, 2020, Electrode materials for supercapacitors: a review of recent advances, Catalysts, 969, 10
Du, 2007, 4
Pandolfo, 2006, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 11, 10.1016/j.jpowsour.2006.02.065
2006, 229
Huang, 2012, An overview of the applications of graphene-based materials in supercapacitors, Small, 8, 1805, 10.1002/smll.201102635
Jayalakshmi, 2008, Simple capacitors to supercapacitors—an overview, Int. J. Electrochem. Sci., 3, 22, 10.1016/S1452-3981(23)15517-9
Wang, 2015, Mesoporous transition metal oxides for supercapacitors, Nanomaterials, 5, 1667, 10.3390/nano5041667
González, 2016, Review on supercapacitors: technologies and materials, Renew. Sustain. Energy Rev., 58, 1189, 10.1016/j.rser.2015.12.249
Julien, 2017, Nanostructured MnO2 as electrode materials for energy storage, Nanomaterials, 396, 7
Dubal, 2017
Yuan, 2016, Dynamic study of (De)sodiation in alpha-MnO2 nanowires, Nano Energy, 19, 382, 10.1016/j.nanoen.2015.11.028
Dubal, 2014, Synthesis, properties, and performance of nanostructured metal oxides for supercapacitors, Pure Appl. Chem., 86, 611, 10.1515/pac-2013-1021
Xiong, 2020, Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: a review, Adv. Energy Mater., 2001769, 10
Wang, 2020, Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors, Nano Energy, 68, 104306, 10.1016/j.nanoen.2019.104306
Khalid, 2020, Al3+/Ag1+ induced phase transformation of MnO2 nanoparticles from α to β and their enhanced electrical and photocatalytic properties, Ceram. Int., 46, 9913, 10.1016/j.ceramint.2020.01.143
Xiao, 2019, One-step hydrothermal synthesis of Cu-doped MnO2 coated diatomite for degradation of methylene blue in Fenton-like system, J. Colloid Interface Sci., 556, 466, 10.1016/j.jcis.2019.08.082
Fu, 2018, Crystal growth of bimetallic oxides CuMnO2 with tailored valence states for optimum electrochemical energy storage, Cryst. Growth Des., 18, 6107, 10.1021/acs.cgd.8b00988
Zahoor, 2014, A comparative study of nanostructured α and δ MnO2 for lithium oxygen battery application, RSC Adv., 4, 10.1039/c3ra47659f
Kahattha, 2019, Influence of calcination temperature on physical and electrochemical properties of MnO2 nanoparticles synthesized by co-precipitation method, Ferroelectrics, 552, 121, 10.1080/00150193.2019.1653088
Benedetti, 2010, Torresi SIC de, Torresi RM. Macroporous MnO2 electrodes obtained by template assisted electrodeposition for electrochemical capacitors, J. Braz. Chem. Soc., 21, 1704, 10.1590/S0103-50532010000900016
Hashemzadeh, 2009, A comparative study of hydrothermal and sol–gel methods in the synthesis of MnO2 nanostructures, J. Sol. Gel Sci. Technol., 51, 169, 10.1007/s10971-009-1978-2
Chiam, 2020, Recent developments in MnO2-based photocatalysts for organic dye removal: a review, Environ. Sci. Pollut. Res., 27, 5759, 10.1007/s11356-019-07568-8
Zhao, 2017, Prepared MnO2 with different crystal forms as electrode materials for supercapacitors: experimental research from hydrothermal crystallization process to electrochemical performances, RSC Adv., 7, 40286, 10.1039/C7RA06369E
Li, 2018, Oxygen vacancies induced by transition metal doping in γ-MnO2 for highly efficient ozone decomposition, Environ. Sci. Technol., 52, 12685, 10.1021/acs.est.8b04294
Wang, 2019, Situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts, Nano-Micro Lett., 11, 10.1007/s40820-019-0277-x
Gaur, 2012, A comparative study of the methods of speciation using X-ray absorption fine structure, Acta Phys. Pol., A, 121, 647, 10.12693/APhysPolA.121.647
Kuzmin, 2014, EXAFS and XANES analysis of oxides at the nanoscale, IUCrJ, 1, 571, 10.1107/S2052252514021101
van Oversteeg, 2017, In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts, Chem. Soc. Rev., 46, 102, 10.1039/C6CS00230G
Fitriana, 2021, Crystal structure and Cu/Fe K-edge analysis of Ba0.5Sr0.5Fe1-xCuxO3-δ (x = 0–0.2) and the influence on conductivity, J. Phys. Chem. Solid., 154, 10.1016/j.jpcs.2021.110065
Latief, 2022, Structure and local structure investigation of (0.85-x)BaTiO3-0.15BiFeO3-xKVO3 system linked to electrical properties, Mater. Chem. Phys., 276, 10.1016/j.matchemphys.2021.125414
Hastuti, 2020, Effect of doping Fe3+ and Cu2+ on the microstructure and electrical properties of cryptomelane-type MnO2 prepared by sol-gel method, IOP Conf. Ser. Earth Environ. Sci., 456, 10.1088/1755-1315/456/1/012017
Ferreira T, Rasband W. ImageJ user guide n.d.:198.
Grillo, 2011, Advances in STEM-CELL. A free software for TEM and STEM analysis and simulations: probe deconvolution in STEM-HAADF, Microsc. Microanal., 17, 1292, 10.1017/S1431927611007331
Klinger, 2017, More features, more tools, more CrysTBox, J. Appl. Crystallogr., 50, 1226, 10.1107/S1600576717006793
Ravel, 2005, ATHENA and ARTEMIS interactive graphical data analysisusing IFEFFIT, Phys. Scripta, 1007
Nuraini, 2017, The influence of local distortion on the electrical properties of the (1-x)(K0.5Na0.5)NbO3-x(Ba 0.8C0.2)TiO3 system, Ceram. Int., 43, 3664, 10.1016/j.ceramint.2016.11.207
Cullity, 1978
Wunderlich, 2010, EXAFS, XANES, and DFT study of the mixed-valence compound YMn2O5 : site-selective substitution of Fe for Mn, Phys. Rev. B, 82, 10.1103/PhysRevB.82.014409
Gao, 2017, The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets, Nat. Commun., 8, 10.1038/ncomms14559
Hwang, 2002, Local crystal structure around manganese in new potassium-based nanocrystalline manganese oxyiodide, J. Phys. Chem. B, 106, 4053, 10.1021/jp012704g
Nasri, 2016, Complex impedance, dielectric properties and electrical conduction mechanism of La0.5Ba0.5FeO3−δ perovskite oxides, RSC Adv., 6, 76659, 10.1039/C6RA10589K
Heath JP. Simulation of impedance spectroscopy in electroceramics using a finite element method n.d.:207.
