Oxidation state, local structure distortion, and defect structure analysis of Cu doped α-MnO2 correlated to conductivity and dielectric properties

Heliyon - Tập 8 - Trang e11459 - 2022
E. Hastuti1,2, A. Subhan3, P. Amonpattaratkit4, M. Zainuri1, T. Triwikantoro1, S. Suasmoro1
1Institute of Technology ‘Sepuluh Nopember’ Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
2Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia
3Research Centre for Physics, Indonesian Institute for Science (LIPI), Serpong, Indonesia
4Synchrotron Light Research Institute (Public Organisation), 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand

Tài liệu tham khảo

Liu, 2018, Advanced energy storage devices: basic principles, analytical methods, and rational materials design, Adv. Sci., 1700322, 5 Wang B. Nanostructured transition metal oxide materials for supercapacitor application n.d.:106. Forouzandeh, 2020, Electrode materials for supercapacitors: a review of recent advances, Catalysts, 969, 10 Du, 2007, 4 Pandolfo, 2006, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 11, 10.1016/j.jpowsour.2006.02.065 2006, 229 Huang, 2012, An overview of the applications of graphene-based materials in supercapacitors, Small, 8, 1805, 10.1002/smll.201102635 Jayalakshmi, 2008, Simple capacitors to supercapacitors—an overview, Int. J. Electrochem. Sci., 3, 22, 10.1016/S1452-3981(23)15517-9 Wang, 2015, Mesoporous transition metal oxides for supercapacitors, Nanomaterials, 5, 1667, 10.3390/nano5041667 González, 2016, Review on supercapacitors: technologies and materials, Renew. Sustain. Energy Rev., 58, 1189, 10.1016/j.rser.2015.12.249 Julien, 2017, Nanostructured MnO2 as electrode materials for energy storage, Nanomaterials, 396, 7 Dubal, 2017 Yuan, 2016, Dynamic study of (De)sodiation in alpha-MnO2 nanowires, Nano Energy, 19, 382, 10.1016/j.nanoen.2015.11.028 Dubal, 2014, Synthesis, properties, and performance of nanostructured metal oxides for supercapacitors, Pure Appl. Chem., 86, 611, 10.1515/pac-2013-1021 Xiong, 2020, Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: a review, Adv. Energy Mater., 2001769, 10 Wang, 2020, Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors, Nano Energy, 68, 104306, 10.1016/j.nanoen.2019.104306 Khalid, 2020, Al3+/Ag1+ induced phase transformation of MnO2 nanoparticles from α to β and their enhanced electrical and photocatalytic properties, Ceram. Int., 46, 9913, 10.1016/j.ceramint.2020.01.143 Xiao, 2019, One-step hydrothermal synthesis of Cu-doped MnO2 coated diatomite for degradation of methylene blue in Fenton-like system, J. Colloid Interface Sci., 556, 466, 10.1016/j.jcis.2019.08.082 Fu, 2018, Crystal growth of bimetallic oxides CuMnO2 with tailored valence states for optimum electrochemical energy storage, Cryst. Growth Des., 18, 6107, 10.1021/acs.cgd.8b00988 Zahoor, 2014, A comparative study of nanostructured α and δ MnO2 for lithium oxygen battery application, RSC Adv., 4, 10.1039/c3ra47659f Kahattha, 2019, Influence of calcination temperature on physical and electrochemical properties of MnO2 nanoparticles synthesized by co-precipitation method, Ferroelectrics, 552, 121, 10.1080/00150193.2019.1653088 Benedetti, 2010, Torresi SIC de, Torresi RM. Macroporous MnO2 electrodes obtained by template assisted electrodeposition for electrochemical capacitors, J. Braz. Chem. Soc., 21, 1704, 10.1590/S0103-50532010000900016 Hashemzadeh, 2009, A comparative study of hydrothermal and sol–gel methods in the synthesis of MnO2 nanostructures, J. Sol. Gel Sci. Technol., 51, 169, 10.1007/s10971-009-1978-2 Chiam, 2020, Recent developments in MnO2-based photocatalysts for organic dye removal: a review, Environ. Sci. Pollut. Res., 27, 5759, 10.1007/s11356-019-07568-8 Zhao, 2017, Prepared MnO2 with different crystal forms as electrode materials for supercapacitors: experimental research from hydrothermal crystallization process to electrochemical performances, RSC Adv., 7, 40286, 10.1039/C7RA06369E Li, 2018, Oxygen vacancies induced by transition metal doping in γ-MnO2 for highly efficient ozone decomposition, Environ. Sci. Technol., 52, 12685, 10.1021/acs.est.8b04294 Wang, 2019, Situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts, Nano-Micro Lett., 11, 10.1007/s40820-019-0277-x Gaur, 2012, A comparative study of the methods of speciation using X-ray absorption fine structure, Acta Phys. Pol., A, 121, 647, 10.12693/APhysPolA.121.647 Kuzmin, 2014, EXAFS and XANES analysis of oxides at the nanoscale, IUCrJ, 1, 571, 10.1107/S2052252514021101 van Oversteeg, 2017, In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts, Chem. Soc. Rev., 46, 102, 10.1039/C6CS00230G Fitriana, 2021, Crystal structure and Cu/Fe K-edge analysis of Ba0.5Sr0.5Fe1-xCuxO3-δ (x = 0–0.2) and the influence on conductivity, J. Phys. Chem. Solid., 154, 10.1016/j.jpcs.2021.110065 Latief, 2022, Structure and local structure investigation of (0.85-x)BaTiO3-0.15BiFeO3-xKVO3 system linked to electrical properties, Mater. Chem. Phys., 276, 10.1016/j.matchemphys.2021.125414 Hastuti, 2020, Effect of doping Fe3+ and Cu2+ on the microstructure and electrical properties of cryptomelane-type MnO2 prepared by sol-gel method, IOP Conf. Ser. Earth Environ. Sci., 456, 10.1088/1755-1315/456/1/012017 Ferreira T, Rasband W. ImageJ user guide n.d.:198. Grillo, 2011, Advances in STEM-CELL. A free software for TEM and STEM analysis and simulations: probe deconvolution in STEM-HAADF, Microsc. Microanal., 17, 1292, 10.1017/S1431927611007331 Klinger, 2017, More features, more tools, more CrysTBox, J. Appl. Crystallogr., 50, 1226, 10.1107/S1600576717006793 Ravel, 2005, ATHENA and ARTEMIS interactive graphical data analysisusing IFEFFIT, Phys. Scripta, 1007 Nuraini, 2017, The influence of local distortion on the electrical properties of the (1-x)(K0.5Na0.5)NbO3-x(Ba 0.8C0.2)TiO3 system, Ceram. Int., 43, 3664, 10.1016/j.ceramint.2016.11.207 Cullity, 1978 Wunderlich, 2010, EXAFS, XANES, and DFT study of the mixed-valence compound YMn2O5 : site-selective substitution of Fe for Mn, Phys. Rev. B, 82, 10.1103/PhysRevB.82.014409 Gao, 2017, The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets, Nat. Commun., 8, 10.1038/ncomms14559 Hwang, 2002, Local crystal structure around manganese in new potassium-based nanocrystalline manganese oxyiodide, J. Phys. Chem. B, 106, 4053, 10.1021/jp012704g Nasri, 2016, Complex impedance, dielectric properties and electrical conduction mechanism of La0.5Ba0.5FeO3−δ perovskite oxides, RSC Adv., 6, 76659, 10.1039/C6RA10589K Heath JP. Simulation of impedance spectroscopy in electroceramics using a finite element method n.d.:207.