Oxidation behavior of extruded Mo5Si3Bx–MoSi2–MoB intermetallics from 600°–1600 °C

Intermetallics - Tập 10 Số 6 - Trang 555-570 - 2002
Andrew J. Thom1, Eric Summers1, Müfit Akinç1
1Ames Laboratory and Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Massalski TB et al., editors. In: Binary alloy phase diagrams, vol. 3. Materials Park (OH): American Society of Metals; 1990. p. 2666.

Whychell D. Bloomfield (NJ): CM Furnaces; 1999.

Meyer, 1996, Compressive creep behavior of Mo5Si3 with the addition of boron, Intermetallics, 4, 273, 10.1016/0966-9795(95)00048-8

Meyer, 1996, Oxidation behavior of boron-modified Mo5Si3 at 800–1300 °C, J Am Ceram Soc., 79, 938, 10.1111/j.1151-2916.1996.tb08528.x

Meyer, 1996, Isothermal oxidation behavior of Mo-Si-B intermetallics at 1450 °C, J Am Ceram Soc., 79, 2763, 10.1111/j.1151-2916.1996.tb09046.x

Akinc M. Next generation high-temperature structural materials for heat exchangers and heating elements. Final report. Advanced Energy Project Agency, Energy Research, U.S.D.O.E.; 1999.

Sakidja R, Sieber H, Perepezko JH. Microstructural development of Mo-rich Mo-B-Si alloys. TMS Molybdenum and Molybdenum Alloys Symposium Proceedings, 1998. p. 99–110.

Nunes CA, Sakidja R, Perepezko JH. Phase stability in high temperature Mo-rich Mo-B-Si alloys. In: Nathal MV et al., editors. Structural intermetallics. 1997. p. 831–839.

Schneibel, 1999, Microstructure and mechanical properties of Mo-Mo3Si-Mo5SiB2 silicides, Materials Science and Engineering, A261, 78, 10.1016/S0921-5093(98)01051-X

Schneibel JH, Kramer MJ, Unal O, Wright RN. Processing and mechanical properties of a molybdenum silicide with the composition Mo-12Si-8.5B (at.%). Intermetallics 2001;9(1):25–31.

Schneibel, 1998, Assessment of processing routes and strength of a 3-phase molybdenum boron silicide (Mo5Si3-Mo5SiB2-Mo3Si), Scripta Materialia, 38, 1169, 10.1016/S1359-6462(97)00558-7

Joint Molybdenum Silicide Alloy Research Meeting between representatives from Air Force, Navy, Pratt & Whitney, USDOE, and associated Universities. TMS Conference, Cincinnati, OH, 4 November 1999.

Summers, 2000, Extrusion and selected engineering properties of Mo-Si-B intermetallics, Intermetallics, 8/9, 1169, 10.1016/S0966-9795(00)00080-7

Summers E. Processing of Mo-Si-B intermetallics by extrusion and oxidation properties of the extruded T1-MoSi2-MoB system. Masters thesis, Iowa State University, Ames, IA, 1999.

Huebsch JJ. Solubility of boron in Mo5+ySi3-y and related mechanical and oxidation properties. Masters thesis, Iowa State University, 1998.

Corning Life Sciences Technical Information Center webpage for Pyrex® Brand 7740 glass. Available from: http://www.scienceproducts.corning.com/technical/descglasslabware.asp#7740LowExpansion.

Meyer, 1999, Oxide scale formation and isothermal oxidation behavior of Mo-Si-B intermetallics at 600–1000 °C, Intermetallics, 7, 153, 10.1016/S0966-9795(98)00058-2

Berkowitz-Mattuck, 1965, High temperature oxidation II. Molybdenum silicides, J Electrochem Soc., 112, 583, 10.1149/1.2423612

Bartlett, 1965, Structure and chemistry of oxide films thermally grown on molybdenum silicides, J American Cer Soc., 48, 551, 10.1111/j.1151-2916.1965.tb14671.x

Anton D, Shaw D. High temperature properties of refractory intermetallics. Mat Res Soc Symp Proc 1991;213:63–8, 733–39.

Thom AJ, Meyer MK, Williams JJ, Akinc M. Improved oxidation resistance of A5Si3 (A=transition metal) silicides by small atom doping. Processing and Fabrication of Advanced Materials IV 1996. p. 139–49.

Yanagihara, 1996, Effect of third elements on the pesting suppression of Mo-Si-X intermetallics (X=Al, Ta, Ti, Zr, and Y), Intermetallics, 4, S133, 10.1016/0966-9795(96)00019-2

Smialek, 1995, Service limitations for oxidation resistant intermetallic compounds, Mat Res Soc Symp Proc, 364, 1273, 10.1557/PROC-364-1273

Lee, 1991, The oxidation resistance of MoSi2 composites, J Metals, 43, 54

Chou, 1993, Kinetics of MoSi2 pest during low-temperature oxidation, J Mat Res., 8, 1605, 10.1557/JMR.1993.1605

Chou, 1993, Mechanism of MoSi2 pest during low-temperature oxidation, J Mat Res., 8, 214, 10.1557/JMR.1993.0214

Samant, 1992, Thermodynamic investigation of the vaporization of molybdenum trioxide, J Alloys Compounds, 187, 373, 10.1016/0925-8388(92)90442-C

Brewer L, Lamoreaux RH. In: Brewer L, editor. Molybdenum: physico-chemical properties of its compounds and alloys, in Atomic Energy Review, Special Issue 2, 1980.

Properties of Corning's glass and glass ceramic families. Corning Glass Works, December 1979.

Parthasarathy TA, Mendiratta MG, Dimikuk DM. Oxidation mechanisms of Mo-reinforced Mo5SiB2 (T2)–Mo3Si alloys. Acta Materialia 2002;50(7):1857–1868.

Taylor, 1996, Boron loss in furnace- and laser-fired, sol-gel derived borosilicate glass films, J Mat Res., 11, 1870, 10.1557/JMR.1996.0237

Buchanan, 1993, Glass sealants for carbon-carbon composites, J Mat Sci., 28, 2324, 10.1007/BF01151661

Vance, 1988, Volatile losses from sphene glass-ceramic and borosilicate glass melts, J Amer Cer Soc., 71, C318, 10.1111/j.1151-2916.1988.tb05927.x

Schlichting, 1984, Oxygen transport through glass layers formed by a gel process, J Non-Crystall Solid, 63, 173, 10.1016/0022-3093(84)90396-X

Kalen, 1991, Oxygen tracer diffusion in vitreous silica, J Am Ceram Soc., 74, 203, 10.1111/j.1151-2916.1991.tb07318.x