Oxidation and hot corrosion behaviors of Mo-doped NiMoAlY alloys at 750 °C
Tài liệu tham khảo
Goward, 1998, Progress in coatings for gas turbine airfoils, Surf. Coat. Technol., 108–109, 73, 10.1016/S0257-8972(98)00667-7
Vialas, 2006, Effect of Pt and Al content on the long-term, high temperature oxidation behavior and interdiffusion of a Pt-modified aluminide coating deposited on Ni-base superalloys, Surf. Coat. Technol., 201, 3846, 10.1016/j.surfcoat.2006.07.246
Shu, 1999, Synergistic effect of NaCl and water vapor on the corrosion of Fe-Cr alloys at 600 °C, Acta Mater.
Chen, 2018, Effect of microstructure on early oxidation of MCrAlY coatings, Acta Mater., 159, 150, 10.1016/j.actamat.2018.08.018
Gurrappa, 2012, 51
Lai, 2007
Lagow, 2016, Materials selection in gas turbine engine design and the role of low thermal expansion materials, JOM, 68, 2770, 10.1007/s11837-016-2071-2
Jenkins, 2020, Measurements of turbine blade temperature in an operating aero engine using thermographic phosphors, Meas. Sci. Technol., 31, 10.1088/1361-6501/ab4c20
Gao, 2018, Studies on the corrosion behavior of Fe-20Cr alloy in NaCl solution spray at 600 °C, Corros.Sci., 133, 165, 10.1016/j.corsci.2018.01.033
Li, 2020, A new insight into the NaCl-induced hot corrosion mechanism of TiN coatings at 500 °C, Corros. Sci., 174, 10.1016/j.corsci.2020.108794
Khajavi, 2004, Failure of first stage gas turbine blades, Eng. Fail. Anal., 11, 589, 10.1016/j.engfailanal.2003.08.010
Zhou, 2014, Microstructure, hardness and corrosion behaviour of Ti/TiN multilayer coatings produced by plasma activated EB-PVD, Surf. Coat. Technol., 258, 102, 10.1016/j.surfcoat.2014.09.058
Shu, 1999, Synergistic effect of NaCl and water vapor on the corrosion of 1Cr-11Ni-2W–2Mo-V steel at 500–700 °C, Oxid. Met., 51, 97, 10.1023/A:1018854202982
Liu, 2012, Corrosion behavior of metals or alloys with a solid NaCl deposit in wet oxygen at medium temperature, Sci. China, 369, 10.1007/s11431-011-4675-7
Ma, 2013, Hot corrosion properties of composite coatings in the presence of NaCl at 700 and 900 degrees C, Corros. Sci., 70, 29, 10.1016/j.corsci.2013.01.004
Padture, 2002, TBCs for gas-turbine engine applications, Science, 296, 280, 10.1126/science.1068609
Gurrappa, 2006, Thermal barrier coatings for enhanced efficiency of gas turbine engines, Surf. Coat. Technol., 201, 3016, 10.1016/j.surfcoat.2006.06.026
He, 2015, Microstructure and hot corrosion behavior of Co–Si modified aluminide coating on nickel based superalloys, Corros. Sci., 100, 466, 10.1016/j.corsci.2015.08.011
Liu, 2016, Hot corrosion behavior of NiCoCrAlYTa coating deposited on Inconel alloy substrate by high velocity oxy-fuel spraying upon exposure to molten V2O5-containing salts, Corros. Sci., 10.1016/j.corsci.2016.09.010
Bai, 2021, Investigations on the diffusion of platinum between CMSX-4 superalloy and platinum-enriched bond coat, Coatings, 11, 441, 10.3390/coatings11040441
Houngninou, 2004, Synthesis and characterisation of pack cemented aluminide coatings on metals, Appl. Surf. Sci., 236, 256, 10.1016/j.apsusc.2004.04.026
Chaliampalias, 2010, The effect of Al and Cr additions on pack cementation zinc coatings, Appl. Surf. Sci., 256, 3618, 10.1016/j.apsusc.2009.12.165
Park, 2015, Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys, Corros. Sci., 90, 305, 10.1016/j.corsci.2014.10.025
Feizabadi, 2018, Cyclic oxidation characteristics of hvof thermal-sprayed NiCoCrAlY and CoCrNiAlY coatings at 1000 °C, J. Alloy. Compd.
Chen, 2019, Influence of Cr content on hot corrosion and a special tube sealing test of single crystal nickel base superalloy, Corros. Sci., 156, 161, 10.1016/j.corsci.2019.05.001
Yu, 2019, Influence of the combined-effect of NaCl and Na2SO4 on the hot corrosion behaviour of aluminide coating on Ni-based alloys, J. Alloy. Compd., 790, 228, 10.1016/j.jallcom.2019.03.165
Rhys-Jones, 1989, Coatings for blade and vane applications in gas turbines, Corros. Sci., 29, 623, 10.1016/0010-938X(89)90104-2
Demasi-Marcin, 1994, Protective coatings in the gas turbine engine, Surf. Coat. Technol., 68–69, 1, 10.1016/0257-8972(94)90129-5
Jackson, 2011, Oxidation study of an EB-PVD MCrAlY thermal barrier coating system, Oxid. Met., 76, 259, 10.1007/s11085-011-9253-7
Wang, 2017, Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy, Corros. Sci., 123, 27, 10.1016/j.corsci.2017.04.004
Meng, 2020, Large-grain α-Al2O3 enabling ultra-high oxidation-resistant MCrAlY bond coats by surface pre-agglomeration treatment, Corros. Sci., 163, 10.1016/j.corsci.2019.108275
Leyens, 2000, Effect of composition on the oxidation and hot corrosion resistance of NiAl doped with precious metals, Surf. Coat. Technol., 133, 15, 10.1016/S0257-8972(00)00878-1
Park, 2015, High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings, Surf. Coat. Technol., 280, 256, 10.1016/j.surfcoat.2015.09.022
Shinata, 1986, NaCl-induced accelerated oxidation of chromium, Oxid. Met., 26, 201, 10.1007/BF00659184
Sun, 2013, Hot corrosion properties of composite coatings in the presence of NaCl at 700 and 900 °C, Corros. Sci.
Sun, 2019, Studies on corrosion behavior of a single-crystal superalloy and its sputtered nanocrystalline coatings with solid NaCl deposit in O2 + 38 vol% H2O environment at 700 °C, Corros. Sci., 161, 10.1016/j.corsci.2019.108187
Shu, 2000, Corrosion behavior of pure Cr with a solid NaCl deposit in O2 plus water vapor, Oxid. Met., 54, 457, 10.1023/A:1004690518225
Wang, 2002, Corrosion behavior of a sputtered K38G nanocrystalline coating with a solid NaCl deposit in wet oxygen at 600 to 700 °C, Oxid. Met., 58, 185, 10.1023/A:1016072726338
Wang, 2003, Influence of Cr content on the corrosion of Fe–Cr alloys: the synergistic effect of NaCl and water vapor, Oxid. Met.
Yu, 2021, Improved oxidation and hot corrosion resistance of Ta‐doped NiAlY alloy at 750 °C, Mater. Corros., 10.1002/maco.202112523
Peng, 2016, Preparation and hot corrosion behavior of a NiCrAlY + AlNiY composite coating, J. Mater. Sci. Technol., 10.1016/j.jmst.2016.04.017
Xie, 2004, Effect of an enamel coating on hot corrosion behavior of the multi-arc plated NiCrAlY composite coating, Mater. Sci. Forum, 461–464, 297, 10.4028/www.scientific.net/MSF.461-464.297
Liang, 2016, Effect of Mo content on microstructure and stress-rupture properties of a Ni-base single crystal superalloy, Prog. Nat. Sci. Mater., 10.1016/j.pnsc.2016.01.006
Johnson, 1995, Processing and mechanical properties of in-situ composites from the NiAlCr and the NiAl-(Cr, Mo) eutectic systems, Intermetallics, 3, 10.1016/0966-9795(95)92674-O
Ru, 2016, Interdendritic Mo homogenization and sub-solidus melting during solution treatment in the Mo-strengthening single crystal superalloys, J. Alloy. Compd., 10.1016/j.jallcom.2015.12.053
Hashimoto, 2007, The role of corrosion-resistant alloying elements in passivity, Corros. Sci., 49, 42, 10.1016/j.corsci.2006.05.003
Sun, 2018, Effects of alloying elements on the corrosion behavior of Ni-based alloys in molten NaCl-KCl-MgCl2 salt at different temperatures, Corros. Sci., 143, 187, 10.1016/j.corsci.2018.08.021
Peng, 2019, Isothermal oxidation behavior of NiAl and NiAl-(Cr,Mo) eutectic alloys, Corros. Sci., 151, 27, 10.1016/j.corsci.2019.02.011
Fu, 2020, Structural, mechanical and tribocorrosion performances of CrMoSiN coatings with various Mo contents in artificial seawater, Appl. Surf. Sci., 525, 10.1016/j.apsusc.2020.146629
Fu, 2022, The enhancement of individual friction and corrosion properties of CrSiN coatings by Mo doping in seawater, Surf. Coat. Technol., 432, 10.1016/j.surfcoat.2021.128069
Xu, 2007, Effect of Mo on the oxidation behavior of NiTiAl alloy, Mater. Sci. Forum, 546–549, 1481, 10.4028/www.scientific.net/MSF.546-549.1481
Qin, 2017, Role of volatilization of molybdenum oxides during the cyclic oxidation of high-Mo containing Ni-based single crystal superalloys, Corros. Sci., 129, 192, 10.1016/j.corsci.2017.08.025
Wei, 2007, Oxidation behavior of a cast polycrystalline Ni-base superalloy in air: at 900 and 1000 °C, Oxid. Met., 68, 149, 10.1007/s11085-007-9066-x
Anghel, 2016, Microstructure and oxidation resistance of a NiCrAlY/Al2O3-sprayed coating on Ti-19Al-10Nb-V alloy, Ceram. Int., 42, 12148, 10.1016/j.ceramint.2016.04.148
Cui, 2021, Improved hot corrosion resistance of Al-gradient NiSiAlY coatings at 750 °C by pre-oxidation, Surf. Coat. Technol., 417, 10.1016/j.surfcoat.2021.127187
Nijdam, 2003, Modelling the thermal oxidation of ternary alloys—compositional changes in the alloy and the development of oxide phases, Acta Mater., 51, 5295, 10.1016/S1359-6454(03)00381-1
Xu, 2021, Design of novel NiSiAlY alloys in marine salt-spray environment: part I. Al-Si-Y and Ni-Si-Y subsystems, J. Mater. Sci. Technol., 88, 10.1016/j.jmst.2021.01.065
Xu, 2021, Design of novel NiSiAlY alloys in marine salt-spray environment: part II. Al-Ni-Si-Y thermodynamic dataset, J. Mater. Sci. Technol., 89, 186, 10.1016/j.jmst.2021.01.088
Peng, 2016, Experimental investigation and thermodynamic re-assessment of the Al–Mo–Ni system, J. Alloy. Compd., 674, 305, 10.1016/j.jallcom.2016.03.044
Heuer, 2013, On the growth of Al2O3 scales, Acta Mater., 61, 6670, 10.1016/j.actamat.2013.07.024
Yu, 2021, Improved oxidation and hot corrosion resistance of the NiSiAlY alloy at 750 °C, Mater. Today Commun., 10.1016/j.mtcomm.2021.102939
Wu, 2013, Study on behavior of NiAl coating with different Ni/Al ratios, Vacuum, 93, 37, 10.1016/j.vacuum.2013.01.001