Oxidation and hot corrosion behaviors of Mo-doped NiMoAlY alloys at 750 °C

Corrosion Science - Tập 201 - Trang 110262 - 2022
Qiong Wang1,2, Dapeng Zhou1, Miao Yu1, Lei Shi3, Xiaojing Li1, Qinshuo Sun1
1Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
2Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, PR China
3Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, PR China

Tài liệu tham khảo

Goward, 1998, Progress in coatings for gas turbine airfoils, Surf. Coat. Technol., 108–109, 73, 10.1016/S0257-8972(98)00667-7 Vialas, 2006, Effect of Pt and Al content on the long-term, high temperature oxidation behavior and interdiffusion of a Pt-modified aluminide coating deposited on Ni-base superalloys, Surf. Coat. Technol., 201, 3846, 10.1016/j.surfcoat.2006.07.246 Shu, 1999, Synergistic effect of NaCl and water vapor on the corrosion of Fe-Cr alloys at 600 °C, Acta Mater. Chen, 2018, Effect of microstructure on early oxidation of MCrAlY coatings, Acta Mater., 159, 150, 10.1016/j.actamat.2018.08.018 Gurrappa, 2012, 51 Lai, 2007 Lagow, 2016, Materials selection in gas turbine engine design and the role of low thermal expansion materials, JOM, 68, 2770, 10.1007/s11837-016-2071-2 Jenkins, 2020, Measurements of turbine blade temperature in an operating aero engine using thermographic phosphors, Meas. Sci. Technol., 31, 10.1088/1361-6501/ab4c20 Gao, 2018, Studies on the corrosion behavior of Fe-20Cr alloy in NaCl solution spray at 600 °C, Corros.Sci., 133, 165, 10.1016/j.corsci.2018.01.033 Li, 2020, A new insight into the NaCl-induced hot corrosion mechanism of TiN coatings at 500 °C, Corros. Sci., 174, 10.1016/j.corsci.2020.108794 Khajavi, 2004, Failure of first stage gas turbine blades, Eng. Fail. Anal., 11, 589, 10.1016/j.engfailanal.2003.08.010 Zhou, 2014, Microstructure, hardness and corrosion behaviour of Ti/TiN multilayer coatings produced by plasma activated EB-PVD, Surf. Coat. Technol., 258, 102, 10.1016/j.surfcoat.2014.09.058 Shu, 1999, Synergistic effect of NaCl and water vapor on the corrosion of 1Cr-11Ni-2W–2Mo-V steel at 500–700 °C, Oxid. Met., 51, 97, 10.1023/A:1018854202982 Liu, 2012, Corrosion behavior of metals or alloys with a solid NaCl deposit in wet oxygen at medium temperature, Sci. China, 369, 10.1007/s11431-011-4675-7 Ma, 2013, Hot corrosion properties of composite coatings in the presence of NaCl at 700 and 900 degrees C, Corros. Sci., 70, 29, 10.1016/j.corsci.2013.01.004 Padture, 2002, TBCs for gas-turbine engine applications, Science, 296, 280, 10.1126/science.1068609 Gurrappa, 2006, Thermal barrier coatings for enhanced efficiency of gas turbine engines, Surf. Coat. Technol., 201, 3016, 10.1016/j.surfcoat.2006.06.026 He, 2015, Microstructure and hot corrosion behavior of Co–Si modified aluminide coating on nickel based superalloys, Corros. Sci., 100, 466, 10.1016/j.corsci.2015.08.011 Liu, 2016, Hot corrosion behavior of NiCoCrAlYTa coating deposited on Inconel alloy substrate by high velocity oxy-fuel spraying upon exposure to molten V2O5-containing salts, Corros. Sci., 10.1016/j.corsci.2016.09.010 Bai, 2021, Investigations on the diffusion of platinum between CMSX-4 superalloy and platinum-enriched bond coat, Coatings, 11, 441, 10.3390/coatings11040441 Houngninou, 2004, Synthesis and characterisation of pack cemented aluminide coatings on metals, Appl. Surf. Sci., 236, 256, 10.1016/j.apsusc.2004.04.026 Chaliampalias, 2010, The effect of Al and Cr additions on pack cementation zinc coatings, Appl. Surf. Sci., 256, 3618, 10.1016/j.apsusc.2009.12.165 Park, 2015, Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys, Corros. Sci., 90, 305, 10.1016/j.corsci.2014.10.025 Feizabadi, 2018, Cyclic oxidation characteristics of hvof thermal-sprayed NiCoCrAlY and CoCrNiAlY coatings at 1000 °C, J. Alloy. Compd. Chen, 2019, Influence of Cr content on hot corrosion and a special tube sealing test of single crystal nickel base superalloy, Corros. Sci., 156, 161, 10.1016/j.corsci.2019.05.001 Yu, 2019, Influence of the combined-effect of NaCl and Na2SO4 on the hot corrosion behaviour of aluminide coating on Ni-based alloys, J. Alloy. Compd., 790, 228, 10.1016/j.jallcom.2019.03.165 Rhys-Jones, 1989, Coatings for blade and vane applications in gas turbines, Corros. Sci., 29, 623, 10.1016/0010-938X(89)90104-2 Demasi-Marcin, 1994, Protective coatings in the gas turbine engine, Surf. Coat. Technol., 68–69, 1, 10.1016/0257-8972(94)90129-5 Jackson, 2011, Oxidation study of an EB-PVD MCrAlY thermal barrier coating system, Oxid. Met., 76, 259, 10.1007/s11085-011-9253-7 Wang, 2017, Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy, Corros. Sci., 123, 27, 10.1016/j.corsci.2017.04.004 Meng, 2020, Large-grain α-Al2O3 enabling ultra-high oxidation-resistant MCrAlY bond coats by surface pre-agglomeration treatment, Corros. Sci., 163, 10.1016/j.corsci.2019.108275 Leyens, 2000, Effect of composition on the oxidation and hot corrosion resistance of NiAl doped with precious metals, Surf. Coat. Technol., 133, 15, 10.1016/S0257-8972(00)00878-1 Park, 2015, High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings, Surf. Coat. Technol., 280, 256, 10.1016/j.surfcoat.2015.09.022 Shinata, 1986, NaCl-induced accelerated oxidation of chromium, Oxid. Met., 26, 201, 10.1007/BF00659184 Sun, 2013, Hot corrosion properties of composite coatings in the presence of NaCl at 700 and 900 °C, Corros. Sci. Sun, 2019, Studies on corrosion behavior of a single-crystal superalloy and its sputtered nanocrystalline coatings with solid NaCl deposit in O2 + 38 vol% H2O environment at 700 °C, Corros. Sci., 161, 10.1016/j.corsci.2019.108187 Shu, 2000, Corrosion behavior of pure Cr with a solid NaCl deposit in O2 plus water vapor, Oxid. Met., 54, 457, 10.1023/A:1004690518225 Wang, 2002, Corrosion behavior of a sputtered K38G nanocrystalline coating with a solid NaCl deposit in wet oxygen at 600 to 700 °C, Oxid. Met., 58, 185, 10.1023/A:1016072726338 Wang, 2003, Influence of Cr content on the corrosion of Fe–Cr alloys: the synergistic effect of NaCl and water vapor, Oxid. Met. Yu, 2021, Improved oxidation and hot corrosion resistance of Ta‐doped NiAlY alloy at 750 °C, Mater. Corros., 10.1002/maco.202112523 Peng, 2016, Preparation and hot corrosion behavior of a NiCrAlY + AlNiY composite coating, J. Mater. Sci. Technol., 10.1016/j.jmst.2016.04.017 Xie, 2004, Effect of an enamel coating on hot corrosion behavior of the multi-arc plated NiCrAlY composite coating, Mater. Sci. Forum, 461–464, 297, 10.4028/www.scientific.net/MSF.461-464.297 Liang, 2016, Effect of Mo content on microstructure and stress-rupture properties of a Ni-base single crystal superalloy, Prog. Nat. Sci. Mater., 10.1016/j.pnsc.2016.01.006 Johnson, 1995, Processing and mechanical properties of in-situ composites from the NiAlCr and the NiAl-(Cr, Mo) eutectic systems, Intermetallics, 3, 10.1016/0966-9795(95)92674-O Ru, 2016, Interdendritic Mo homogenization and sub-solidus melting during solution treatment in the Mo-strengthening single crystal superalloys, J. Alloy. Compd., 10.1016/j.jallcom.2015.12.053 Hashimoto, 2007, The role of corrosion-resistant alloying elements in passivity, Corros. Sci., 49, 42, 10.1016/j.corsci.2006.05.003 Sun, 2018, Effects of alloying elements on the corrosion behavior of Ni-based alloys in molten NaCl-KCl-MgCl2 salt at different temperatures, Corros. Sci., 143, 187, 10.1016/j.corsci.2018.08.021 Peng, 2019, Isothermal oxidation behavior of NiAl and NiAl-(Cr,Mo) eutectic alloys, Corros. Sci., 151, 27, 10.1016/j.corsci.2019.02.011 Fu, 2020, Structural, mechanical and tribocorrosion performances of CrMoSiN coatings with various Mo contents in artificial seawater, Appl. Surf. Sci., 525, 10.1016/j.apsusc.2020.146629 Fu, 2022, The enhancement of individual friction and corrosion properties of CrSiN coatings by Mo doping in seawater, Surf. Coat. Technol., 432, 10.1016/j.surfcoat.2021.128069 Xu, 2007, Effect of Mo on the oxidation behavior of NiTiAl alloy, Mater. Sci. Forum, 546–549, 1481, 10.4028/www.scientific.net/MSF.546-549.1481 Qin, 2017, Role of volatilization of molybdenum oxides during the cyclic oxidation of high-Mo containing Ni-based single crystal superalloys, Corros. Sci., 129, 192, 10.1016/j.corsci.2017.08.025 Wei, 2007, Oxidation behavior of a cast polycrystalline Ni-base superalloy in air: at 900 and 1000 °C, Oxid. Met., 68, 149, 10.1007/s11085-007-9066-x Anghel, 2016, Microstructure and oxidation resistance of a NiCrAlY/Al2O3-sprayed coating on Ti-19Al-10Nb-V alloy, Ceram. Int., 42, 12148, 10.1016/j.ceramint.2016.04.148 Cui, 2021, Improved hot corrosion resistance of Al-gradient NiSiAlY coatings at 750 °C by pre-oxidation, Surf. Coat. Technol., 417, 10.1016/j.surfcoat.2021.127187 Nijdam, 2003, Modelling the thermal oxidation of ternary alloys—compositional changes in the alloy and the development of oxide phases, Acta Mater., 51, 5295, 10.1016/S1359-6454(03)00381-1 Xu, 2021, Design of novel NiSiAlY alloys in marine salt-spray environment: part I. Al-Si-Y and Ni-Si-Y subsystems, J. Mater. Sci. Technol., 88, 10.1016/j.jmst.2021.01.065 Xu, 2021, Design of novel NiSiAlY alloys in marine salt-spray environment: part II. Al-Ni-Si-Y thermodynamic dataset, J. Mater. Sci. Technol., 89, 186, 10.1016/j.jmst.2021.01.088 Peng, 2016, Experimental investigation and thermodynamic re-assessment of the Al–Mo–Ni system, J. Alloy. Compd., 674, 305, 10.1016/j.jallcom.2016.03.044 Heuer, 2013, On the growth of Al2O3 scales, Acta Mater., 61, 6670, 10.1016/j.actamat.2013.07.024 Yu, 2021, Improved oxidation and hot corrosion resistance of the NiSiAlY alloy at 750 °C, Mater. Today Commun., 10.1016/j.mtcomm.2021.102939 Wu, 2013, Study on behavior of NiAl coating with different Ni/Al ratios, Vacuum, 93, 37, 10.1016/j.vacuum.2013.01.001