Overview and outlook of the strategies devoted to electrofluorescence surveys: Application to single cell secretion analysis

TrAC Trends in Analytical Chemistry - Tập 132 - Trang 116055 - 2020
Manon Guille-Collignon1, Frédéric Lemaître1
1PASTEUR, Département de chimie, école normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France

Tài liệu tham khảo

Burgoyne, 2003, Secretory granule exocytosis, Physiol. Rev., 83, 581, 10.1152/physrev.00031.2002 Park, 2009, Short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis, Cell. Signal., 21, 1465, 10.1016/j.cellsig.2009.02.015 Sharma, 2018, The fusion pore, 60 years after the first cartoon, FEBS Lett., 592, 3542, 10.1002/1873-3468.13160 Alvarez de Toledo, 2018, Phases of the exocytotic fusion pore, FEBS Lett., 592, 3532, 10.1002/1873-3468.13234 Keighron, 2020, Electrochemistry of single-vesicle events, Annu. Rev. Anal. Chem., 13, 16, 10.1146/annurev-anchem-061417-010032 Ren, 2016, The evidence for open and closed exocytosis as the primary release mechanism, Q. Rev. Biophys., 49, 10.1017/S0033583516000081 Liang, 2017, Exocytosis, endocytosis, and their coupling in excitable cells, Front. Mol. Neurosci., 10, 10.3389/fnmol.2017.00109 Wu, 2014, Exocytosis and endocytosis: modes, functions, and coupling mechanisms, Annu. Rev. Physiol., 76, 301, 10.1146/annurev-physiol-021113-170305 Ge, 2010, Bioanalytical tools for single-cell study of exocytosis, Anal. Bioanal. Chem., 397, 3281, 10.1007/s00216-010-3843-0 Borges, 2008, Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods, Acta Physiol., 192, 173, 10.1111/j.1748-1716.2007.01814.x Lindau, 2012, High resolution electrophysiological techniques for the study of calcium-activated exocytosis, Biochim. Biophys. Acta, 1820, 1234, 10.1016/j.bbagen.2011.12.011 Fathali, 2018, Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release, Pflug. Arch. Eur. J. Phy., 470, 125, 10.1007/s00424-017-2069-9 Liu, 2019, Recent development in amperometric measurements of vesicular exocytosis, Trends Anal. Chem., 113, 13, 10.1016/j.trac.2019.01.013 Amatore, 2008, Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress, Chem. Rev., 108, 2585, 10.1021/cr068062g Amatore, 2015, Vesicular exocytosis and microdevices – microelectrode arrays, Analyst, 140, 3687, 10.1039/C4AN01932F Keighron, 2012, Analytical tools to monitor exocytosis: a focus on new fluorescent probes and methods, Analyst, 137, 1755, 10.1039/c2an15901e Omiatek, 2010, Analytical approaches to investigate transmitter content and release from single secretory vesicles, Anal. Bioanal. Chem., 397, 3269, 10.1007/s00216-010-3698-4 Becherer, 2007, Quantifying exocytosis by combination of membrane capacitance measurements and total internal reflection fluorescence microscopy in chromaffin cells, PloS One, 2, e505, 10.1371/journal.pone.0000505 Robinson, 1995, Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells, Proc. Natl. Acad. Sci. U.S.A., 92, 2474, 10.1073/pnas.92.7.2474 Yuan, 2015, Spatiotemporal detection and analysis of exocytosis reveal fusion "hotspots" organized by the cytoskeleton in endocrine cells, Biophys. J., 108, 251, 10.1016/j.bpj.2014.11.3462 Tran, 2007, Characterization of sequential exocytosis in a human neuroendocrine cell line using evanescent wave microscopy and “virtual trajectory” analysis, Eur. Biophys. J., 37, 55, 10.1007/s00249-007-0161-3 Dernick, 2007, 315 Zudans, 2004, Electrochemical and optical evaluation of noble metal- and carbon-ITO hybrid optically transparent electrodes, J. Electroanal. Chem., 565, 311, 10.1016/j.jelechem.2003.10.025 Amatore, 2006, Coupling of electrochemistry and fluorescence microscopy at indium tin oxide microelectrodes for the analysis of single exocytotic events, Angew. Chem. Int. Ed., 45, 4000, 10.1002/anie.200600510 Kisler, 2012, Transparent electrode materials for simultaneous amperometric detection of exocytosis and fluorescence microscopy, J. Biomaterials Nanobiotechnol., 3, 243, 10.4236/jbnb.2012.322030 Granqvist, 2002, Transparent and conducting ITO films: new developments and applications, Thin Solid Films, 411, 1, 10.1016/S0040-6090(02)00163-3 Hosono, 2002, Frontier of transparent conductive oxide thin films, Vacuum, 66, 419, 10.1016/S0042-207X(02)00165-3 Amatore, 2007, Comparison of apex and bottom secretion efficiency at chromaffin cells as measured by amperometry, Biophys, Inside Chem., 127, 165 Gao, 2008, Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells, Biomed, Microdevices, 10, 623, 10.1007/s10544-008-9173-8 Sen, 2009, Preferential cell attachment to nitrogen-doped diamond-like carbon (DLC:N) for the measurement of quantal exocytosis, Biomaterials, 30, 1604, 10.1016/j.biomaterials.2008.11.039 Gillis, 2018, Electrochemical measurement of quantal exocytosis using microchips, Pflug. Arch. Eur. J. Phy., 470, 97, 10.1007/s00424-017-2063-2 Meunier, 2013, Indium Tin Oxide devices for amperometric detection of vesicular release by single cells (vol 162, pg 14, 2012), Biophys. Chem., 171, 84, 10.1016/j.bpc.2012.09.003 Meunier, 2012, Indium Tin Oxide devices for amperometric detection of vesicular release by single cells, Biophys. Chem., 162, 14, 10.1016/j.bpc.2011.12.002 Shi, 2010, Release monitoring of single cells on a microfluidic device coupled with fluorescence microscopy and electrochemistry, Biomicrofluidics, 4, 43009, 10.1063/1.3491470 Hafez, 2005, Electrochemical imaging of fusion pore openings by electrochemical detector arrays, Proc. Natl. Acad. Sci. U.S.A., 102, 13879, 10.1073/pnas.0504098102 Liu, 2017, A dual functional electroactive and fluorescent probe for coupled measurements of vesicular exocytosis with high spatial and temporal resolution, Angew. Chem. Int. Ed., 56, 2366, 10.1002/anie.201611145 Meunier, 2011, Coupling amperometry and total internal reflection fluorescence microscopy at ITO surfaces for monitoring exocytosis of single vesicles, Angew. Chem. Int. Ed., 50, 5081, 10.1002/anie.201101148 Merchant, 2015, Synaptic optical imaging platforms: examining pharmacological modulation of neurotransmitter release at discrete synapses, Neuropharmacology, 98, 90, 10.1016/j.neuropharm.2015.03.013 Schloss, 2015, Shine bright: considerations on the use of fluorescent substrates in living monoaminergic neurons in vitro, Neural Regen. Res., 10, 1383, 10.4103/1673-5374.165223 Karpowicz, 2013, APP+, a fluorescent analogue of the neurotoxin MPP+, is a marker of catecholamine neurons in brain tissue, but not a fluorescent false neurotransmitter, ACS Chem. Neurosci., 4, 858, 10.1021/cn400038u Er, 2015, NeuO: a fluorescent chemical probe for live neuron labeling, Angew. Chem. Int. Ed., 54, 2442, 10.1002/anie.201408614 Colgan, 2009, Activity-dependent vesicular monoamine transporter-mediated depletion of the nucleus supports somatic release by serotonin neurons, J. Neurosci., 29, 15878, 10.1523/JNEUROSCI.4210-09.2009 Beltran, 2011, Fluorescent β-blockers as tools to study presynaptic mechanisms of neurosecretion, Pharmaceuticals, 4, 713, 10.3390/ph4050713 Bera, 2018, Fluorogenic detection of monoamine neurotransmitters in live cells, ACS Chem. Neurosci., 9, 469, 10.1021/acschemneuro.7b00391 Hettie, 2013, Selective catecholamine recognition with NeuroSensor 521: a fluorescent sensor for the visualization of norepinephrine in fixed and live cells, ACS Chem. Neurosci., 4, 918, 10.1021/cn300227m Klockow, 2013, ExoSensor 517: a dual-analyte fluorescent chemosensor for visualizing neurotransmitter exocytosis, ACS Chem. Neurosci., 4, 1334, 10.1021/cn400128s Klockow, 2015, Tunable molecular logic gates designed for imaging released neurotransmitters, Chem. Eur J., 21, 11446, 10.1002/chem.201501379 Gubernator, 2009, Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals, Science, 324, 1441, 10.1126/science.1172278 Lee, 2010, Development of pH-responsive fluorescent false neurotransmitters, J. Am. Chem. Soc., 132, 8828, 10.1021/ja101740k Lau, 2015, Visualization of neurotransmitter uptake and release in serotonergic neurons, J. Neurosci. Methods, 241, 10, 10.1016/j.jneumeth.2014.12.009 Matthaeus, 2015, Differential uptake mechanisms of fluorescent substrates into stem-cell-derived serotonergic neurons, ACS Chem. Neurosci., 6, 1906, 10.1021/acschemneuro.5b00219 Hu, 2013, New fluorescent substrate enables quantitative and high-throughput examination of vesicular monoamine transporter 2 (VMAT2), ACS Chem. Biol., 8, 1947, 10.1021/cb400259n Dunn, 2018, Designing a norepinephrine optical tracer for imaging individual noradrenergic synapses and their activity in vivo, Nat. Commun., 9, 2838, 10.1038/s41467-018-05075-x Pereira, 2016, Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum, Nat. Neurosci., 19, 578, 10.1038/nn.4252 Henke, 2018, Toward serotonin fluorescent false neurotransmitters: development of fluorescent dual serotonin and vesicular monoamine transporter substrates for visualizing serotonin neurons, ACS Chem. Neurosci., 9, 925, 10.1021/acschemneuro.7b00320 Ganesana, 2017, Analytical techniques in neuroscience: recent advances in imaging, separation, and electrochemical methods, Anal. Chem., 89, 314, 10.1021/acs.analchem.6b04278 Sames, 2013, Visualizing neurotransmitter secretion at individual synapses, ACS Chem. Neurosci., 4, 648, 10.1021/cn4000956 Meszaros, 2018, Evoked transients of pH-sensitive fluorescent false neurotransmitter reveal dopamine hot spots in the globus pallidus, eLife, 7, 10.7554/eLife.42383 Hu, 2019, Electroactive fluorescent false neurotransmitter FFN102 partially replaces dopamine in PC12 cell vesicles, Biophys. Chem., 245, 1, 10.1016/j.bpc.2018.11.001 Liu, 2018, Coupling electrochemistry and TIRF-microscopy with the fluorescent false neurotransmitter FFN102 supports the fluorescence signals during single vesicle exocytosis detection, Biophys. Chem., 235, 48, 10.1016/j.bpc.2018.02.004 Zhang, 2019, A high-affinity fluorescent sensor for catecholamine: application to monitoring norepinephrine exocytosis, Angew. Chem. Int. Ed., 58, 7611, 10.1002/anie.201810919 Pandard, 2019, A fluorescent false neurotransmitter as a dual electrofluorescent probe for secretory cell models, ChemPlusChem, 84, 1578, 10.1002/cplu.201900385 Lock, 2015, A comparison of fluorescent Ca2+ indicators for imaging local Ca2+ signals in cultured cells, Cell Calcium, 58, 638, 10.1016/j.ceca.2015.10.003 Russell, 2011, Imaging calcium signals in vivo: a powerful tool in physiology and pharmacology, Br. J. Pharmacol., 163, 1605, 10.1111/j.1476-5381.2010.00988.x Rodriguez, 2013, Fluorescent dopamine tracer resolves individual dopaminergic synapses and their activity in the brain, Proc. Natl. Acad. Sci. U.S.A., 110, 870, 10.1073/pnas.1213569110