Overview and outlook of the strategies devoted to electrofluorescence surveys: Application to single cell secretion analysis
Tài liệu tham khảo
Burgoyne, 2003, Secretory granule exocytosis, Physiol. Rev., 83, 581, 10.1152/physrev.00031.2002
Park, 2009, Short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis, Cell. Signal., 21, 1465, 10.1016/j.cellsig.2009.02.015
Sharma, 2018, The fusion pore, 60 years after the first cartoon, FEBS Lett., 592, 3542, 10.1002/1873-3468.13160
Alvarez de Toledo, 2018, Phases of the exocytotic fusion pore, FEBS Lett., 592, 3532, 10.1002/1873-3468.13234
Keighron, 2020, Electrochemistry of single-vesicle events, Annu. Rev. Anal. Chem., 13, 16, 10.1146/annurev-anchem-061417-010032
Ren, 2016, The evidence for open and closed exocytosis as the primary release mechanism, Q. Rev. Biophys., 49, 10.1017/S0033583516000081
Liang, 2017, Exocytosis, endocytosis, and their coupling in excitable cells, Front. Mol. Neurosci., 10, 10.3389/fnmol.2017.00109
Wu, 2014, Exocytosis and endocytosis: modes, functions, and coupling mechanisms, Annu. Rev. Physiol., 76, 301, 10.1146/annurev-physiol-021113-170305
Ge, 2010, Bioanalytical tools for single-cell study of exocytosis, Anal. Bioanal. Chem., 397, 3281, 10.1007/s00216-010-3843-0
Borges, 2008, Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods, Acta Physiol., 192, 173, 10.1111/j.1748-1716.2007.01814.x
Lindau, 2012, High resolution electrophysiological techniques for the study of calcium-activated exocytosis, Biochim. Biophys. Acta, 1820, 1234, 10.1016/j.bbagen.2011.12.011
Fathali, 2018, Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release, Pflug. Arch. Eur. J. Phy., 470, 125, 10.1007/s00424-017-2069-9
Liu, 2019, Recent development in amperometric measurements of vesicular exocytosis, Trends Anal. Chem., 113, 13, 10.1016/j.trac.2019.01.013
Amatore, 2008, Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress, Chem. Rev., 108, 2585, 10.1021/cr068062g
Amatore, 2015, Vesicular exocytosis and microdevices – microelectrode arrays, Analyst, 140, 3687, 10.1039/C4AN01932F
Keighron, 2012, Analytical tools to monitor exocytosis: a focus on new fluorescent probes and methods, Analyst, 137, 1755, 10.1039/c2an15901e
Omiatek, 2010, Analytical approaches to investigate transmitter content and release from single secretory vesicles, Anal. Bioanal. Chem., 397, 3269, 10.1007/s00216-010-3698-4
Becherer, 2007, Quantifying exocytosis by combination of membrane capacitance measurements and total internal reflection fluorescence microscopy in chromaffin cells, PloS One, 2, e505, 10.1371/journal.pone.0000505
Robinson, 1995, Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells, Proc. Natl. Acad. Sci. U.S.A., 92, 2474, 10.1073/pnas.92.7.2474
Yuan, 2015, Spatiotemporal detection and analysis of exocytosis reveal fusion "hotspots" organized by the cytoskeleton in endocrine cells, Biophys. J., 108, 251, 10.1016/j.bpj.2014.11.3462
Tran, 2007, Characterization of sequential exocytosis in a human neuroendocrine cell line using evanescent wave microscopy and “virtual trajectory” analysis, Eur. Biophys. J., 37, 55, 10.1007/s00249-007-0161-3
Dernick, 2007, 315
Zudans, 2004, Electrochemical and optical evaluation of noble metal- and carbon-ITO hybrid optically transparent electrodes, J. Electroanal. Chem., 565, 311, 10.1016/j.jelechem.2003.10.025
Amatore, 2006, Coupling of electrochemistry and fluorescence microscopy at indium tin oxide microelectrodes for the analysis of single exocytotic events, Angew. Chem. Int. Ed., 45, 4000, 10.1002/anie.200600510
Kisler, 2012, Transparent electrode materials for simultaneous amperometric detection of exocytosis and fluorescence microscopy, J. Biomaterials Nanobiotechnol., 3, 243, 10.4236/jbnb.2012.322030
Granqvist, 2002, Transparent and conducting ITO films: new developments and applications, Thin Solid Films, 411, 1, 10.1016/S0040-6090(02)00163-3
Hosono, 2002, Frontier of transparent conductive oxide thin films, Vacuum, 66, 419, 10.1016/S0042-207X(02)00165-3
Amatore, 2007, Comparison of apex and bottom secretion efficiency at chromaffin cells as measured by amperometry, Biophys, Inside Chem., 127, 165
Gao, 2008, Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells, Biomed, Microdevices, 10, 623, 10.1007/s10544-008-9173-8
Sen, 2009, Preferential cell attachment to nitrogen-doped diamond-like carbon (DLC:N) for the measurement of quantal exocytosis, Biomaterials, 30, 1604, 10.1016/j.biomaterials.2008.11.039
Gillis, 2018, Electrochemical measurement of quantal exocytosis using microchips, Pflug. Arch. Eur. J. Phy., 470, 97, 10.1007/s00424-017-2063-2
Meunier, 2013, Indium Tin Oxide devices for amperometric detection of vesicular release by single cells (vol 162, pg 14, 2012), Biophys. Chem., 171, 84, 10.1016/j.bpc.2012.09.003
Meunier, 2012, Indium Tin Oxide devices for amperometric detection of vesicular release by single cells, Biophys. Chem., 162, 14, 10.1016/j.bpc.2011.12.002
Shi, 2010, Release monitoring of single cells on a microfluidic device coupled with fluorescence microscopy and electrochemistry, Biomicrofluidics, 4, 43009, 10.1063/1.3491470
Hafez, 2005, Electrochemical imaging of fusion pore openings by electrochemical detector arrays, Proc. Natl. Acad. Sci. U.S.A., 102, 13879, 10.1073/pnas.0504098102
Liu, 2017, A dual functional electroactive and fluorescent probe for coupled measurements of vesicular exocytosis with high spatial and temporal resolution, Angew. Chem. Int. Ed., 56, 2366, 10.1002/anie.201611145
Meunier, 2011, Coupling amperometry and total internal reflection fluorescence microscopy at ITO surfaces for monitoring exocytosis of single vesicles, Angew. Chem. Int. Ed., 50, 5081, 10.1002/anie.201101148
Merchant, 2015, Synaptic optical imaging platforms: examining pharmacological modulation of neurotransmitter release at discrete synapses, Neuropharmacology, 98, 90, 10.1016/j.neuropharm.2015.03.013
Schloss, 2015, Shine bright: considerations on the use of fluorescent substrates in living monoaminergic neurons in vitro, Neural Regen. Res., 10, 1383, 10.4103/1673-5374.165223
Karpowicz, 2013, APP+, a fluorescent analogue of the neurotoxin MPP+, is a marker of catecholamine neurons in brain tissue, but not a fluorescent false neurotransmitter, ACS Chem. Neurosci., 4, 858, 10.1021/cn400038u
Er, 2015, NeuO: a fluorescent chemical probe for live neuron labeling, Angew. Chem. Int. Ed., 54, 2442, 10.1002/anie.201408614
Colgan, 2009, Activity-dependent vesicular monoamine transporter-mediated depletion of the nucleus supports somatic release by serotonin neurons, J. Neurosci., 29, 15878, 10.1523/JNEUROSCI.4210-09.2009
Beltran, 2011, Fluorescent β-blockers as tools to study presynaptic mechanisms of neurosecretion, Pharmaceuticals, 4, 713, 10.3390/ph4050713
Bera, 2018, Fluorogenic detection of monoamine neurotransmitters in live cells, ACS Chem. Neurosci., 9, 469, 10.1021/acschemneuro.7b00391
Hettie, 2013, Selective catecholamine recognition with NeuroSensor 521: a fluorescent sensor for the visualization of norepinephrine in fixed and live cells, ACS Chem. Neurosci., 4, 918, 10.1021/cn300227m
Klockow, 2013, ExoSensor 517: a dual-analyte fluorescent chemosensor for visualizing neurotransmitter exocytosis, ACS Chem. Neurosci., 4, 1334, 10.1021/cn400128s
Klockow, 2015, Tunable molecular logic gates designed for imaging released neurotransmitters, Chem. Eur J., 21, 11446, 10.1002/chem.201501379
Gubernator, 2009, Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals, Science, 324, 1441, 10.1126/science.1172278
Lee, 2010, Development of pH-responsive fluorescent false neurotransmitters, J. Am. Chem. Soc., 132, 8828, 10.1021/ja101740k
Lau, 2015, Visualization of neurotransmitter uptake and release in serotonergic neurons, J. Neurosci. Methods, 241, 10, 10.1016/j.jneumeth.2014.12.009
Matthaeus, 2015, Differential uptake mechanisms of fluorescent substrates into stem-cell-derived serotonergic neurons, ACS Chem. Neurosci., 6, 1906, 10.1021/acschemneuro.5b00219
Hu, 2013, New fluorescent substrate enables quantitative and high-throughput examination of vesicular monoamine transporter 2 (VMAT2), ACS Chem. Biol., 8, 1947, 10.1021/cb400259n
Dunn, 2018, Designing a norepinephrine optical tracer for imaging individual noradrenergic synapses and their activity in vivo, Nat. Commun., 9, 2838, 10.1038/s41467-018-05075-x
Pereira, 2016, Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum, Nat. Neurosci., 19, 578, 10.1038/nn.4252
Henke, 2018, Toward serotonin fluorescent false neurotransmitters: development of fluorescent dual serotonin and vesicular monoamine transporter substrates for visualizing serotonin neurons, ACS Chem. Neurosci., 9, 925, 10.1021/acschemneuro.7b00320
Ganesana, 2017, Analytical techniques in neuroscience: recent advances in imaging, separation, and electrochemical methods, Anal. Chem., 89, 314, 10.1021/acs.analchem.6b04278
Sames, 2013, Visualizing neurotransmitter secretion at individual synapses, ACS Chem. Neurosci., 4, 648, 10.1021/cn4000956
Meszaros, 2018, Evoked transients of pH-sensitive fluorescent false neurotransmitter reveal dopamine hot spots in the globus pallidus, eLife, 7, 10.7554/eLife.42383
Hu, 2019, Electroactive fluorescent false neurotransmitter FFN102 partially replaces dopamine in PC12 cell vesicles, Biophys. Chem., 245, 1, 10.1016/j.bpc.2018.11.001
Liu, 2018, Coupling electrochemistry and TIRF-microscopy with the fluorescent false neurotransmitter FFN102 supports the fluorescence signals during single vesicle exocytosis detection, Biophys. Chem., 235, 48, 10.1016/j.bpc.2018.02.004
Zhang, 2019, A high-affinity fluorescent sensor for catecholamine: application to monitoring norepinephrine exocytosis, Angew. Chem. Int. Ed., 58, 7611, 10.1002/anie.201810919
Pandard, 2019, A fluorescent false neurotransmitter as a dual electrofluorescent probe for secretory cell models, ChemPlusChem, 84, 1578, 10.1002/cplu.201900385
Lock, 2015, A comparison of fluorescent Ca2+ indicators for imaging local Ca2+ signals in cultured cells, Cell Calcium, 58, 638, 10.1016/j.ceca.2015.10.003
Russell, 2011, Imaging calcium signals in vivo: a powerful tool in physiology and pharmacology, Br. J. Pharmacol., 163, 1605, 10.1111/j.1476-5381.2010.00988.x
Rodriguez, 2013, Fluorescent dopamine tracer resolves individual dopaminergic synapses and their activity in the brain, Proc. Natl. Acad. Sci. U.S.A., 110, 870, 10.1073/pnas.1213569110