Overtaking Collisions of Electrostatic N-Soliton in Electron–Hole Quantum Plasmas

Plasma Physics Reports - Tập 46 - Trang 41-49 - 2020
E. F. El-Shamy1, M. Mahmoud2
1Department of Physics, College of Science, King Khalid University, P.O. 9004, Abha, Kingdom of Saudi Arabia and Department of Physics, Faculty of Science, Damietta University, New Damietta, Egypt
2Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha, Kingdom of Saudi Arabia

Tóm tắt

The effects of overtaking collisions of electrostatic multisolitons (i.e., N-soliton) in an electron–hole dense semiconductor plasma are examined employing the reductive perturbation theory (RPT) and Hirota’s bilinear method (HBM). A Korteweg-de Vries equation (KdVE), which admits N-soliton, is derived using the RPT. In addition, HBM is applied that resulted in two-soliton and three-soliton solutions. The exchange of energies due to the overtaking collisions between the electrostatic N-soliton are analyzed by varying physical parameters, such as the quantum semiconductor plasma number density and the exchange-correlation terms for electrons and holes, which causes alternation in the behavior of solitons. It is found that the existence of exchange-correlation potentials leads to a diminishing in a phase shift of N-soliton.The current study is an attempt to further exemplify the essential properties of N-soliton in electron–hole plasmas and their applications in the modern semiconductor electronic devices of nanoscale size.

Tài liệu tham khảo

P. A. Markowich, C. A. Ringhofer, and C. Schmeiser, Semiconductor Equations (Springer-Verlag, New York, 1990). V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, Opt. Express 162, 109 (2008). M. Dunne, Nature Phys. 2, 2 (2006). P. K. Shukla and B. Eliasson, Phys. Rev. Lett. 99, 096401 (2007). Y. Wang, P. K. Shukla, and B. Eliasson, Phys. Plasmas 20, 013103 (2013). N. Crouseilles, P. A. Hervieux, and G. Manfredi, Phys. Rev. B 78, 155412 (2008). L. Brey, J. Dempsey, N. F. Johnson, and B. I. Halperin, Phys. Rev. B 42, 1240 (1990). P. K. Shukla and B. Eliasson, Phys. Rev. Lett. 108, 165007 (2012). Yu-T. Ma, Sheng-H. Mao, and Ju-K. Xue, Phys. Plasmas 18, 102108 (2011). O. A. Egorov, D. V. Skryabin, and F. Lederer, Phys. Rev. B 82, 165326 (2010). I. Zeba, M. E. Yahia, P. K. Shukla, and W. M. Moslem, Phys. Lett. A 376, 2309 (2012). W. M. Moslem, I. Zeba, and P. K. Shukla, Appl. Phys. Lett. 101, 032106 (2012). Y. Wang and X. Lü, Phys. Plasmas 21, 022107 (2014). Y. Wang and B. Eliasson, Phys. Rev. B 89, 205316 (2014). E. F. El-Shamy and F. S. Gohman, Phys. Lett. A 378, 2688 (2014). R. E. Tolba, N. A. El-Bedwehy, W. M. Moslem, S. K. El-Labany, and M. E. Yahia, Phys. Plasmas 23, 012111 (2016). U. M. Abdelsalam, F. M. Allehiany, and W. M. Moslem, Acta Phys. Pol. A 129, 472 (2016). E. F. El-Shamy, F. S. Gohman, M. M. Alqahtani, and S. AlFaify, Phys. Plasmas 25, 012108 (2018). A. Saha and P. Chatterjee, Astrophys. Space Sci. 353, 169 (2014). S. K. El-Labany, E. F. El-Shamy, and S. K. El-Sherbeny, Astrophys. Space Sci. 351,151(2014). A. Saha, N. Pal, and P. Chatterjee, Phys. Plasmas 21, 102101 (2014). G. Mandal, K. Roy, A. Paul, A. Saha, and P. Chatterjee, Z. Naturforsch. A 70, 703 (2015). K. Roy, M. K. Ghorui, P. Chatterjee, and M. Tribeche, Commun. Theor. Phys. 65, 237 (2016). M. S. Alam, M. G. Hafez, M. R. Talukder, and M. H. Ali, Chin. Phys. B 26, 095203 (2017). E. F. El-Shamy, N. A. El-Bedwehy, M. Shokry, and S. K. El-Labany, Z. Naturforsch. A 73, 893 (2018). C. H. Su and R. M. Miura, J. Fluid Mech. 98, 509 (1980). G. X. Huang and M. G. Velarde, Phys. Rev. E 53, 2988 (1996). S. K. El-Labany, E. F. El-Shamy, and M. Abu El-Eneen, Astrophys. Space Sci. 337, 275(2012). J. K. Xue, Phys. Rev. E 69, 016403 (2004). E. F. El-Shamy, Phys. Plasmas 16, 113704 (2009). T. Tanituti and C. Wei, J. Phys. Soc. Jpn. 24, 941 (1968). R. Hirota, Phys. Rev. Lett. 27, 1192 (1971). R. Hirota, J. Phys. Soc. Jpn. 33, 1456 (1972). R. Hirota, J. Math. Phys.14, 805 (197w3). R. Hirota, The Direct Method in the Soliton Theory (Cambridge University Press, Cambridge, UK 2004). J. Srinivas, S. I. Popel, and P. K. Shukla, J. Plasma Physics 55, 209 (1996). S. I. Popel, A. P. Golub, and T. V. Losseva, Phys. Rev. E 67, 056402 (2003). T. V. Losseva, S. I. Popel, A. P. Golub’, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009). T. V. Losseva, S. I. Popel, and A. P. Golub, Plasma Phys. Rep. 38, 729 (2012). T. V. Losseva, S. I. Popel, A. P. Golub, Yu. N. Izvekova, and P. K. Shukla, Phys. Plasmas 19, 013703 (2012). X. Qi, Y. X. Xu, W. S. Duan, and L. Yang, Phys. Plasmas 21, 013702 (2014). F. Biancalana, S. B. Healy, R. Fehse, and E. P. O’Reilly, Phys. Rev. A 73, 063826 (2006).