Overexpression of plasmepsin II and plasmepsin III does not directly cause reduction in Plasmodium falciparum sensitivity to artesunate, chloroquine and piperaquine

Duangkamon Loesbanluechai1,2, Namfon Kotanan1, Cristina de Cozar3, Theerarat Kochakarn1, Megan R. Ansbro4,5, Kesinee Chotivanich6,7, Nicholas J. White7,8, Prapon Wilairat9, Marcus C.S. Lee5, Francisco Javier Gamo3, Laura Maria Sanz3, Thanat Chookajorn1, Krittikorn Kümpornsin5
1Genomics and Evolutionary Medicine Unit (GEM), Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
2Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
3Tres Cantos Medicine Development Campus, GlaxoSmithKline, Parque Tecnológico de Madrid, Tres Cantos, 28760, Spain
4Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
5Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
6Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
7Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
8Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
9Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

Tài liệu tham khảo

Agrawal, 2017, Association of a novel mutation in the Plasmodium falciparum chloroquine resistance transporter with decreased piperaquine sensitivity, J. Infect. Dis., 216, 468, 10.1093/infdis/jix334 Amaratunga, 2016, Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study, Lancet Infect. Dis., 16, 357, 10.1016/S1473-3099(15)00487-9 Amato, 2017, Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study, Lancet Infect. Dis., 17, 164, 10.1016/S1473-3099(16)30409-1 Amato, 2018, Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study, Lancet Infect. Dis., 18, 337, 10.1016/S1473-3099(18)30068-9 Ashley, 2014, Spread of artemisinin resistance in Plasmodium falciparum malaria, N. Engl. J. Med., 371, 411, 10.1056/NEJMoa1314981 Bhaumik, 2009, Crystal structures of the histo-aspartic protease (HAP) from Plasmodium falciparum, J. Mol. Biol., 388, 520, 10.1016/j.jmb.2009.03.011 Boddey, 2013, Role of plasmepsin V in export of diverse protein families from the Plasmodium falciparum exportome, Traffic, 14, 532, 10.1111/tra.12053 Bopp, 2018, Plasmepsin II-III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum, Nat. Commun., 9, 1769, 10.1038/s41467-018-04104-z Bunditvorapoom, 2018, Fitness loss under amino acid starvation in artemisinin-resistant Plasmodium falciparum isolates from Cambodia, Sci. Rep., 8, 12622, 10.1038/s41598-018-30593-5 Chaorattanakawee, 2016, Ex vivo piperaquine resistance developed rapidly in Plasmodium falciparum isolates in northern Cambodia compared to Thailand, Malar. J., 15, 519, 10.1186/s12936-016-1569-y Chotivanich, 2014, Laboratory detection of artemisinin-resistant Plasmodium falciparum, Antimicrob. Agents Chemother., 58, 3157, 10.1128/AAC.01924-13 Chugh, 2013, Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A., 110, 5392, 10.1073/pnas.1218412110 Coombs, 2001, Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets, Trends Parasitol., 17, 532, 10.1016/S1471-4922(01)02037-2 Crabb, 1996, Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A., 93, 7289, 10.1073/pnas.93.14.7289 Deitsch, 2001, Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes, Nucleic Acids Res., 29, 850, 10.1093/nar/29.3.850 Dhingra, 2017, A variant PfCRT isoform can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine, mBio, 8, 10.1128/mBio.00303-17 Dondorp, 2009, Artemisinin resistance in Plasmodium falciparum malaria, N. Engl. J. Med., 361, 455, 10.1056/NEJMoa0808859 Duru, 2015, Plasmodium falciparum dihydroartemisinin-piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations, BMC Med., 13, 305, 10.1186/s12916-015-0539-5 Eastman, 2009, Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria, Nat. Rev. Microbiol., 7, 864, 10.1038/nrmicro2239 Fidock, 2000, Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance, Mol. Cell., 6, 861, 10.1016/S1097-2765(05)00077-8 Francis, 1997, Biosynthesis and maturation of the malaria aspartic hemoglobinases plasmepsins I and II, J. Biol. Chem., 272, 14961, 10.1074/jbc.272.23.14961 Francis, 1997, Hemoglobin metabolism in the malaria parasite Plasmodium falciparum, Annu. Rev. Microbiol., 51, 97, 10.1146/annurev.micro.51.1.97 Gamo, 2010, Thousands of chemical starting points for antimalarial lead identification, Nature, 465, 305, 10.1038/nature09107 Goldberg, 2005, Hemoglobin degradation, Curr. Top. Microbiol. Immunol., 295, 275 Imwong, 2017, Spread of a single multidrug resistant malaria parasite lineage (PfPailin) to Vietnam, Lancet Infect. Dis., 17, 1022, 10.1016/S1473-3099(17)30524-8 Klemba, 2002, Biological roles of proteases in parasitic protozoa, Annu. Rev. Biochem., 71, 275, 10.1146/annurev.biochem.71.090501.145453 Klonis, 2011, Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion, Proc. Natl. Acad. Sci. U. S. A., 108, 11405, 10.1073/pnas.1104063108 Kumpornsin, 2014, Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I, Malar. J., 13, 150, 10.1186/1475-2875-13-150 Kumpornsin, 2014, Origin of robustness in generating drug-resistant malaria parasites, Mol. Biol. Evol., 31, 1649, 10.1093/molbev/msu140 Liu, 2005, The role of Plasmodium falciparum food vacuole plasmepsins, J. Biol. Chem., 280, 1432, 10.1074/jbc.M409740200 Livak, 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 25, 402, 10.1006/meth.2001.1262 Mamoun, 1999, A set of independent selectable markers for transfection of the human malaria parasite Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A., 96, 8716, 10.1073/pnas.96.15.8716 Mukherjee, 2018, Inactivation of Plasmepsin 2 and 3 sensitizes Plasmodium falciparum to the antimalarial drug piperaquine, Antimicrob. Agents Chemother., 62, 10.1128/AAC.02309-17 Otto, 2010, New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq, Mol. Microbiol., 76, 12, 10.1111/j.1365-2958.2009.07026.x Pascual, 2012, Ex vivo activity of the ACT new components pyronaridine and piperaquine in comparison with conventional ACT drugs against isolates of Plasmodium falciparum, Malar. J., 11, 10.1186/1475-2875-11-45 Ponsuwanna, 2016, Comparative genome-wide analysis and evolutionary history of haemoglobin-processing and haem detoxification enzymes in malarial parasites, Malar. J., 15, 51, 10.1186/s12936-016-1097-9 Pussard, 1994, Antimalarial 4-aminoquinolines: mode of action and pharmacokinetics, Fundam. Clin. Pharmacol., 8, 1, 10.1111/j.1472-8206.1994.tb00774.x Raynes, 1999, Bisquinoline antimalarials: their role in malaria chemotherapy, Int. J. Parasitol., 29, 367, 10.1016/S0020-7519(98)00217-3 Ross, 2018, Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine, Nat. Commun., 9, 3314, 10.1038/s41467-018-05652-0 Sackton, 2016, Genotypic context and epistasis in individuals and populations, Cell, 166, 279, 10.1016/j.cell.2016.06.047 Sato, 2003, Targeting GFP to the malarial mitochondrion, Mol. Biochem. Parasitol., 130, 155, 10.1016/S0166-6851(03)00166-X Schmittgen, 2008, Analyzing real-time PCR data by the comparative C(T) method, Nat. Protoc., 3, 1101, 10.1038/nprot.2008.73 Sigala, 2014, The peculiarities and paradoxes of Plasmodium heme metabolism, Annu. Rev. Microbiol., 68, 259, 10.1146/annurev-micro-091313-103537 Silva, 1996, Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A., 93, 10034, 10.1073/pnas.93.19.10034 Sleebs, 2014, Inhibition of Plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites, PLoS Biol., 12, 10.1371/journal.pbio.1001897 Volkman, 2017, Genome-wide association studies of drug-resistance determinants, Trends Parasitol., 33, 214, 10.1016/j.pt.2016.10.001 Wellems, 2001, Chloroquine-resistant malaria, J. Infect. Dis., 184, 770, 10.1086/322858 Witkowski, 2013, Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies, Lancet Infect. Dis., 13, 1043, 10.1016/S1473-3099(13)70252-4 Witkowski, 2017, A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study, Lancet Infect. Dis., 17, 174, 10.1016/S1473-3099(16)30415-7 Wittayacom, 2010, A nuclear targeting system in Plasmodium falciparum, Malar. J., 9, 126, 10.1186/1475-2875-9-126 Woodrow, 2005, Artemisinins, Postgrad. Med., 81, 71, 10.1136/pgmj.2004.028399 Woodrow, 2017, The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread, FEMS Microbiol. Rev., 41, 34, 10.1093/femsre/fuw037