Overexpression of plasmepsin II and plasmepsin III does not directly cause reduction in Plasmodium falciparum sensitivity to artesunate, chloroquine and piperaquine
Tài liệu tham khảo
Agrawal, 2017, Association of a novel mutation in the Plasmodium falciparum chloroquine resistance transporter with decreased piperaquine sensitivity, J. Infect. Dis., 216, 468, 10.1093/infdis/jix334
Amaratunga, 2016, Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study, Lancet Infect. Dis., 16, 357, 10.1016/S1473-3099(15)00487-9
Amato, 2017, Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study, Lancet Infect. Dis., 17, 164, 10.1016/S1473-3099(16)30409-1
Amato, 2018, Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study, Lancet Infect. Dis., 18, 337, 10.1016/S1473-3099(18)30068-9
Ashley, 2014, Spread of artemisinin resistance in Plasmodium falciparum malaria, N. Engl. J. Med., 371, 411, 10.1056/NEJMoa1314981
Bhaumik, 2009, Crystal structures of the histo-aspartic protease (HAP) from Plasmodium falciparum, J. Mol. Biol., 388, 520, 10.1016/j.jmb.2009.03.011
Boddey, 2013, Role of plasmepsin V in export of diverse protein families from the Plasmodium falciparum exportome, Traffic, 14, 532, 10.1111/tra.12053
Bopp, 2018, Plasmepsin II-III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum, Nat. Commun., 9, 1769, 10.1038/s41467-018-04104-z
Bunditvorapoom, 2018, Fitness loss under amino acid starvation in artemisinin-resistant Plasmodium falciparum isolates from Cambodia, Sci. Rep., 8, 12622, 10.1038/s41598-018-30593-5
Chaorattanakawee, 2016, Ex vivo piperaquine resistance developed rapidly in Plasmodium falciparum isolates in northern Cambodia compared to Thailand, Malar. J., 15, 519, 10.1186/s12936-016-1569-y
Chotivanich, 2014, Laboratory detection of artemisinin-resistant Plasmodium falciparum, Antimicrob. Agents Chemother., 58, 3157, 10.1128/AAC.01924-13
Chugh, 2013, Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A., 110, 5392, 10.1073/pnas.1218412110
Coombs, 2001, Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets, Trends Parasitol., 17, 532, 10.1016/S1471-4922(01)02037-2
Crabb, 1996, Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A., 93, 7289, 10.1073/pnas.93.14.7289
Deitsch, 2001, Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes, Nucleic Acids Res., 29, 850, 10.1093/nar/29.3.850
Dhingra, 2017, A variant PfCRT isoform can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine, mBio, 8, 10.1128/mBio.00303-17
Dondorp, 2009, Artemisinin resistance in Plasmodium falciparum malaria, N. Engl. J. Med., 361, 455, 10.1056/NEJMoa0808859
Duru, 2015, Plasmodium falciparum dihydroartemisinin-piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations, BMC Med., 13, 305, 10.1186/s12916-015-0539-5
Eastman, 2009, Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria, Nat. Rev. Microbiol., 7, 864, 10.1038/nrmicro2239
Fidock, 2000, Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance, Mol. Cell., 6, 861, 10.1016/S1097-2765(05)00077-8
Francis, 1997, Biosynthesis and maturation of the malaria aspartic hemoglobinases plasmepsins I and II, J. Biol. Chem., 272, 14961, 10.1074/jbc.272.23.14961
Francis, 1997, Hemoglobin metabolism in the malaria parasite Plasmodium falciparum, Annu. Rev. Microbiol., 51, 97, 10.1146/annurev.micro.51.1.97
Gamo, 2010, Thousands of chemical starting points for antimalarial lead identification, Nature, 465, 305, 10.1038/nature09107
Goldberg, 2005, Hemoglobin degradation, Curr. Top. Microbiol. Immunol., 295, 275
Imwong, 2017, Spread of a single multidrug resistant malaria parasite lineage (PfPailin) to Vietnam, Lancet Infect. Dis., 17, 1022, 10.1016/S1473-3099(17)30524-8
Klemba, 2002, Biological roles of proteases in parasitic protozoa, Annu. Rev. Biochem., 71, 275, 10.1146/annurev.biochem.71.090501.145453
Klonis, 2011, Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion, Proc. Natl. Acad. Sci. U. S. A., 108, 11405, 10.1073/pnas.1104063108
Kumpornsin, 2014, Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I, Malar. J., 13, 150, 10.1186/1475-2875-13-150
Kumpornsin, 2014, Origin of robustness in generating drug-resistant malaria parasites, Mol. Biol. Evol., 31, 1649, 10.1093/molbev/msu140
Liu, 2005, The role of Plasmodium falciparum food vacuole plasmepsins, J. Biol. Chem., 280, 1432, 10.1074/jbc.M409740200
Livak, 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 25, 402, 10.1006/meth.2001.1262
Mamoun, 1999, A set of independent selectable markers for transfection of the human malaria parasite Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A., 96, 8716, 10.1073/pnas.96.15.8716
Mukherjee, 2018, Inactivation of Plasmepsin 2 and 3 sensitizes Plasmodium falciparum to the antimalarial drug piperaquine, Antimicrob. Agents Chemother., 62, 10.1128/AAC.02309-17
Otto, 2010, New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq, Mol. Microbiol., 76, 12, 10.1111/j.1365-2958.2009.07026.x
Pascual, 2012, Ex vivo activity of the ACT new components pyronaridine and piperaquine in comparison with conventional ACT drugs against isolates of Plasmodium falciparum, Malar. J., 11, 10.1186/1475-2875-11-45
Ponsuwanna, 2016, Comparative genome-wide analysis and evolutionary history of haemoglobin-processing and haem detoxification enzymes in malarial parasites, Malar. J., 15, 51, 10.1186/s12936-016-1097-9
Pussard, 1994, Antimalarial 4-aminoquinolines: mode of action and pharmacokinetics, Fundam. Clin. Pharmacol., 8, 1, 10.1111/j.1472-8206.1994.tb00774.x
Raynes, 1999, Bisquinoline antimalarials: their role in malaria chemotherapy, Int. J. Parasitol., 29, 367, 10.1016/S0020-7519(98)00217-3
Ross, 2018, Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine, Nat. Commun., 9, 3314, 10.1038/s41467-018-05652-0
Sackton, 2016, Genotypic context and epistasis in individuals and populations, Cell, 166, 279, 10.1016/j.cell.2016.06.047
Sato, 2003, Targeting GFP to the malarial mitochondrion, Mol. Biochem. Parasitol., 130, 155, 10.1016/S0166-6851(03)00166-X
Schmittgen, 2008, Analyzing real-time PCR data by the comparative C(T) method, Nat. Protoc., 3, 1101, 10.1038/nprot.2008.73
Sigala, 2014, The peculiarities and paradoxes of Plasmodium heme metabolism, Annu. Rev. Microbiol., 68, 259, 10.1146/annurev-micro-091313-103537
Silva, 1996, Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A., 93, 10034, 10.1073/pnas.93.19.10034
Sleebs, 2014, Inhibition of Plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites, PLoS Biol., 12, 10.1371/journal.pbio.1001897
Volkman, 2017, Genome-wide association studies of drug-resistance determinants, Trends Parasitol., 33, 214, 10.1016/j.pt.2016.10.001
Wellems, 2001, Chloroquine-resistant malaria, J. Infect. Dis., 184, 770, 10.1086/322858
Witkowski, 2013, Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies, Lancet Infect. Dis., 13, 1043, 10.1016/S1473-3099(13)70252-4
Witkowski, 2017, A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study, Lancet Infect. Dis., 17, 174, 10.1016/S1473-3099(16)30415-7
Wittayacom, 2010, A nuclear targeting system in Plasmodium falciparum, Malar. J., 9, 126, 10.1186/1475-2875-9-126
Woodrow, 2005, Artemisinins, Postgrad. Med., 81, 71, 10.1136/pgmj.2004.028399
Woodrow, 2017, The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread, FEMS Microbiol. Rev., 41, 34, 10.1093/femsre/fuw037