Overexpression of PtoMYB115 improves lignocellulose recalcitrance to enhance biomass digestibility and bioethanol yield by specifically regulating lignin biosynthesis in transgenic poplar
Tóm tắt
Woody plants provide the most abundant biomass resource that is convertible for biofuels. Since lignin is a crucial recalcitrant factor against lignocellulose hydrolysis, genetic engineering of lignin biosynthesis is considered as a promising solution. Many MYB transcription factors have been identified to involve in the regulation of cell wall formation or phenylpropanoid pathway. In a previous study, we identified that PtoMYB115 contributes to the regulation of proanthocyanidin pathway, however, little is known about its role in lignocellulose biosynthesis and biomass saccharification in poplar. Here, we detected the changes of cell wall features and examined biomass enzymatic saccharification for bioethanol production under various chemical pretreatments in PtoMYB115 transgenic plants. We reported that PtoMYB115 might specifically regulate lignin biosynthesis to affect xylem development. Overexpression of PtoMYB115 altered lignin biosynthetic gene expression, resulting in reduced lignin deposition, raised S/G and beta-O-4 linkage, resulting in a significant reduction in cellulase adsorption with lignin and an increment in cellulose accessibility. These alterations consequently improved lignocellulose recalcitrance for significantly enhanced biomass saccharification and bioethanol yield in the PtoMYB115-OE transgenic lines. In contrast, the knockout of PtoMYB115 by CRISPR/Cas9 showed reduced woody utilization under various chemical pretreatments. This study shows that PtoMYB115 plays an important role in specifically regulating lignin biosynthesis and improving lignocellulose features. The enhanced biomass saccharification and bioethanol yield in the PtoMYB115-OE lines suggests that PtoMYB115 is a candidate gene for genetic modification to facilitate the utilization of biomass.
Tài liệu tham khảo
Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. The path forward for biofuels and biomaterials. Science. 2006;311:484–9.
Service RF. Cellulosic ethanol-biofuel researchers prepare to reap a new harvest. Science. 2007;315:1488–91.
Yuan YF, Jiang B, Chen H, Wu WJ, Wu SF, Jin YC, et al. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnol Biofuels. 2021;14:205.
Vogt T. Phenylpropanoid biosynthesis. Mol Plant. 2010;3:2–20.
Zhong R, Cui D, Ye ZH. Secondary cell wall biosynthesis. New Phytol. 2019;221:1703–23.
Chen J, Fan X, Zhang L, Chen X, Sun S, Sun RC. Research progress in lignin-based slow/controlled release fertilizer. Chemsuschem. 2020;13:4356–66.
Liu T, Wang P, Tian J, Guo J, Zhu W, Jin Y, et al. Polystyrene sulfonate is effective for enhancing biomass enzymatic saccharification under green liquor pretreatment in bioenergy poplar. Biotechnol Biofuels. 2022;15:10.
Kumar L, Arantes V, Chandra R, Saddler J. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol. 2012;103:201–8.
Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, et al. Inhibition of enzymatic hydrolysis by residual lignins from softwood-study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng. 2011;108:2823–34.
Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, et al. Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA. 2011;108:6300–5.
Li X, Li M, Pu Y, Ragauskas AJ, Klett AS, Thies M, et al. Inhibitory effects of lignin on enzymatic hydrolysis: the role of lignin chemistry and molecular weight. Renew Energy. 2018;123:664–74.
Zhao C, Qiao X, Shao Q, Hassan M, Ma Z. Evolution of the lignin chemical structure during the bioethanol production process and its inhibition to enzymatic hydrolysis. Energy Fuels. 2020;34:5938–47.
Jeong SY, Lee EJ, Ban SE, Lee JW. Structural characterization of the lignin-carbohydrate complex in biomass pretreated with Fenton oxidation and hydrothermal treatment and consequences on enzymatic hydrolysis efficiency. Carbohydr Polym. 2021;270:118375.
Shuai L, Amiri MT, Questell-Santiago YM, Heroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science. 2016;54:29–33.
Zhang C, Xu LH, Ma CY, Wang HM, Zhao YY, Wu YY, Wen JL. Understanding the structural changes of lignin macromolecules from balsa wood at different growth stages. Front Energy Res. 2020;8:181.
Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, et al. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA. 2011;108:3803–8.
Dien BS, Miller DJ, Hector RE, Dixon RA, Chen F, McCaslin M, et al. Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresour Technol. 2011;102:6479–86.
Chen F, Dixon RA. Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol. 2007;25:759–61.
Van Acker R, Leplé JC, Aerts D, Storme V, Goeminne G, Ivens B, et al. Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci USA. 2014;111:845–50.
Shafrin F, Das SS, Sanan-Mishra N, Khan H. Artificial miRNA-mediated downregulation of two monolignoid biosynthetic genes (C3H and F5H) cause reduction in lignin content in jute. Plant Mol Biol. 2015;89:511–27.
Reddy MS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L). Proc Natl Acad Sci USA. 2005;102:16573–8.
Fan D, Li C, Fan C, Hu J, Li J, Yao S, Lu W, Yan Y, Luo K. MicroRNA6443-mediated regulation of ferulate 5-hydroxylase gene alters lignin composition and enhances saccharification in Populus tomentosa. New Phytol. 2020;226:410–25.
Vanholme R, Cesarino I, Rataj K, Xiao Y, Sundin L, Goeminne G, et al. Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science. 2013;341:1103–6.
Van Acker R, Déjardin A, Desmet S, Hoengenaert L, Vanholme R, Morreel K, et al. Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1. Plant Physiol. 2017;175:1018–39.
Qin S, Fan C, Li X, Li Y, Hu J, Li C, Luo K. LACCASE14 is required for the deposition of guaiacyl lignin and affects cell wall digestibility in poplar. Biotechnol Biofuels. 2020;13:197.
Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, Karlen SD, et al. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science. 2014;344:90–3.
Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell. 2008;20:2763–82.
Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature. 2015;517:571–5.
Wang L, Lu W, Ran L, Dou L, Yao S, Hu J, et al. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa. Plant J. 2019;99:733–51.
Zhu Y, Li L. Multi-layered regulation of plant cell wall thickening. Plant Cell Physiol. 2021;62:1867–73.
McCarthy RL, Zhong R, Ye ZH. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol. 2009;50:1950–64.
Zhou J, Lee C, Zhong R, Ye ZH. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell. 2009;21:248–66.
Fornalé S, Shi X, Chai C, Encina A, Irar S, Capellades M, et al. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J. 2010;64:633–44.
Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DGJ, et al. Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol. 2012;193:121–36.
Vélez-Bermúdez ICV, Salazar-Henao JE, Fornalé S, López-Vidriero I, Franco-Zorrilla JM, Grotewold E, et al. A MYB/ZML complex regulates wound-induced lignin genes in maize. Plant Cell. 2015;27:3245–59.
Wang XC, Wu J, Guan ML, Zhao CH, Geng P, Zhao Q. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant J. 2020;101:637–52.
Wu L, Zhang ML, Zhang R, Yu HZ, Wang HL, Li JY, et al. Down-regulation of OsMYB103L distinctively alters beta-1,4-glucan polymerization and cellulose microfibers assembly for enhanced biomass enzymatic saccharification in rice. Biotechnol Biofuels. 2021;14:245.
Xiao R, Zhang C, Guo X, Li H, Lu H. MYB transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development. Int J Mol Sci. 2021;22:3560.
Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, et al. EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol. 2010;188:774–86.
McCarthy RL, Zhong R, Fowler S, Lyskowski D, Piyasena H, Carleton K, et al. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant Cell Physiol. 2010;51:1084–90.
Yang L, Zhao X, Ran L, Li C, Fan D, Luo K. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Sci Rep. 2017;7:41209.
Ye ZH, Zhong R. Molecular control of wood formation in trees. J Exp Bot. 2015;66:4119–31.
Wang L, Ran L, Hou Y, Tian Q, Li C, Liu R, et al. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. New Phytol. 2017;215:351–67.
James AM, Ma D, Mellway R, Gesell A, Yoshida K, Walker V, et al. Poplar MYB115 and MYB134 transcription factors regulate proanthocyanidin synthesis and structure. Plant Physiol. 2017;174:154–71.
Du J, Gerttula S, Li ZH, Zhao ST, Li-Liu Y, Liu Y, Lu MZ, Groover AT. Brassinosteroid regulation of wood formation in poplar. New Phytol. 2020;225:1516–30.
Wang HM, Ma CY, Li HY, Chen TY, Wen JL, Cao XF, et al. Structural variations of lignin macromolecules from early growth stages of poplar cell walls. ACS Sustain Chem Eng. 2020;8:1813–22.
Kim H, Li Q, Karlen SD, SmithRA SR, Liu J, et al. Monolignol benzoates incorporate into the lignin of transgenic Populus trichocarpa depleted in C3H and C4H. ACS Sustain Chem Eng. 2020;8:3644–54.
Fan C, Yu H, Qin SF, Li YL, Alam A, Xu C, et al. Brassinosteroid overproduction improves lignocellulose quantity and quality to maximize bioethanol yield under green-like biomass process in transgenic poplar. Biotechnol Biofuels. 2020;13:9.
Alam A, Zhang R, Liu P, Huang JF, Wang YT, Hu Z, Madadi M, Sun D, Hu RF, Ragauskas AJ, Tu YY, Peng LC. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy miscanthus. Biotechnol Biofuels. 2019. https://doi.org/10.1186/s13068-019-1437-4.
Huang J, Xia T, Li G, Li X, Li Y, Wang Y, et al. Overproduction of native endo-β-1,4-glucanases leads to largely enhanced biomass saccharification and bioethanol production by specific modification of cellulose features in transgenic rice. Biotechnol Biofuels. 2019;12:11.
Li E, Bhargava A, Qiang W, Friedmann M, Forneris N, Savidge R, et al. Douglas the Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. New Phytol. 2012;194:102–15.
Wang YT, Fan CF, Hu HZ, Li Y, Sun D, Wang YM, Peng LC. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv. 2016;34(5):997–1017.
Loque D, Scheller HV, Pauly M. Engineering of plant cell walls for enhanced biofuel production. Curr Opin Plant Biol. 2015;25:51–161.
Fan C, Feng S, Huang J, Wang Y, Wu L, Li X, et al. AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice. Biotechnol Biofuels. 2017;10:221.
Madadi M, Wang Y, Xu C, Liu P, Wang Y, Xia T, et al. Using Amaranthus green proteins as universal biosurfactant and biosorbent for effective enzymatic degradation of diverse lignocellulose residues and efficient multiple trace metals remediation of farming lands. J Hazard Mater. 2021;406:124727.
Wiman M, Dienes D, Hansen MAT, van der Meulen T, Zacchi G, Liden G. Cellulose accessibility determines the rate of enzymatic hydrolysis of steam-pretreated spruce. Bioresource Technol. 2012;126:208–15.