Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean

Wenfeng Ning1, Hong Zhai2, Jun Yu1, Shuang Liang1, Xue Yang1, Xueying Xing1, Jianling Huo1, Pei Tian1, Yanling Yang1, Xi Bai1
1College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
2Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(51):463–499

Bai X, Liu J, Tang L, Cai H, Chen M, Ji W, Liu Y, Zhu Y (2013) Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa). Funct Plant Biol 40(10):1048–1056

Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant & Soil 39(39):205–207

Flohé L, Ötting F (1984) [10] Superoxide dismutase assays. Methods in Enzymology:93–104

Flores T, Karpova O, Su X, Zeng P, Bilyeu K, Sleper DA, Nguyen HT, Zhang ZJ (2008) Silencing of Gm FAD3 gene by siRNA leads to low α-linolenic acids (18:3) of fad3-mutant phenotype in soybean [ Glycine max (Merr.)]. Transgenic Res 17(5):839–850

Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675–1690

Ge Y, Li Y, Zhu YM, Bai X, Lv DK, Guo D, Ji W, Cai H (2010) Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol 10:153

Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana Benthamiana : its history and future as a model for plant–pathogen interactions. Mol Plant-Microbe Interact 21(8):1015–1026

Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought tolerance and salt tolerance in rice. Proc Natl Acad Sci 103(35):12987–12992

Hu Y, Chen L, Wang H, Zhang L, Wang F, Yu D (2013) Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J 74(5):730–745

James AT, Lawn RJ, Cooper M (2008) Genotypic variation for drought stress response traits in soybean. II. Inter-relations between epidermal conductance, osmotic potential, relative water content, and plant survival. Aust J Agric Res 59(7):670–678

Jiang Y, Deyholos M (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 TFs in abiotic stresses. Plant Mol Biol. Plant Mol Biol 69(1–2):91–105

Lin Z, Li S, Zhang D (1988) The changes of pigments, phenolics content and activities of polyphenol oxidase and phenylalanine ammonia-lyase in pericarp of postharvest litchi fruit. Acta Bot Sin 30(1):40–45

Luo X, Bai X, Sun X, Zhu D, Liu B, Ji W, Cai H, Cao L, Wu J, Hu M (2013a) Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. Journal of experimental botany:ert073

Luo X, Sun X, Liu B, Zhu D, Bai X, Cai H, Ji W, Cao L, Wu J, Wang M (2013b) Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis. PLoS One 8(8):e73295

Manavalan LP, Guttikonda SK, Tran L-SP, Nguyen HT (2009) Physiological and molecular approaches to improve drought tolerance in soybean. Plant Cell Physiol 50(7):1260–1276

Miyashita K, Kimura K (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot 53(2):205–214

Nayyar H, Satwinder K, Kumar S, Singh K, Dhir K (2005) Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Botanical Bulletin of Academia Sinica 46

Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Biao MA, Lin Q, Zhang ZB, Zhang JS (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35(6):1156–1170

Phang TH, Shao G, Lam HM (2008) Salt tolerance in soybean. J Integr Plant Biol 50(10):1196–1212

Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63(3):417–429

Richards R (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot 51(suppl 1):447–458

Shou H, Zhu D, Chen C, Zhu W, Zhu S (1991) The initial study of responses and physiological indexes for drought tolerance in eight soybean varieties under drought condition. Acta Agric Zhejiangensis:278–281

Sun X, Li Y, Cai H, Bai X, Wei J, Ding X, Zhu Y (2011) The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses. J Plant Res 125(3):429–438

Sun X, Sun M, Luo X, Ding X, Ji W, Cai H, Bai X, Liu X, Zhu Y (2013) A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta 237(6):1527–1545

Tang L, Cai H, Zhai H, Luo X, Wang Z, Cui L, Bai X (2014) Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell, Tissue and Organ Culture (PCTOC) 118(1):77–86

Tang L, Hua C, Wei J, Xiao L, Wang Z, Jing W, Wang X, Lin C, Yang W, Zhu Y (2013) Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa ( Medicago sativa L.). Plant Physiology & Biochemistry 71(71C):22–30

Taylor H, Burnett E, Booth G (1978) Taproot elongation rates of soybeans. Zeitschrift fuer Acker und Pflanzenbau

Wang M, Vannozzi A, Wang G, Zhong Y, Corso M, Cavallini E, Cheng ZM (2015) A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins. Front Plant Sci 6:417

Wei W, Zhang Y, Lu H, Guan Z, Chai T (2008) A novel WRKY transcriptional factor from Thlaspi Caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep 27(4):795–803

Willems E, Leyns L, Vandesompele J (2008) Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem 379(1):127–129

Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28(1):21–30

Zeng T, Kou Y, Liu H, Li X, Xiao J, Wang S (2011) OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot 62(14):4863–4874

Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6(5):430–440