Sự biểu hiện quá mức của CaTLP1, một yếu tố phiên mã khả dĩ trong đậu gà (Cicer arietinum L.), thúc đẩy khả năng chịu đựng stress

Plant Molecular Biology - Tập 79 - Trang 479-493 - 2012
Vijay Wardhan1, Kishwer Jahan1, Sonika Gupta1, Srinivasarao Chennareddy1, Asis Datta1, Subhra Chakraborty1, Niranjan Chakraborty1
1National Institute of Plant Genome Research, New Delhi, India

Tóm tắt

Mất nước là yếu tố môi trường quan trọng nhất ảnh hưởng đến sự phát triển và tăng trưởng của cây trồng, và năng suất nông nghiệp. Để hiểu rõ cơ chế bên trong của khả năng chịu stress, và để xác định các protein nhằm cải thiện những đặc điểm quan trọng này, chúng tôi đã sàng lọc proteome phản ứng với mất nước của đậu gà và xác định một protein giống tubby, được gọi là CaTLP1. CaTLP1 được phát hiện chủ yếu liên kết với DNA mạch đôi nhưng không có khả năng kích hoạt phiên mã. Chúng tôi đã nghiên cứu cấu trúc và tổ chức gen và chứng minh, lần đầu tiên, rằng CaTLP1 có thể tham gia vào phản ứng với stress thẩm thấu ở cây. Các bản sao mRNA được biểu hiện mạnh mẽ trong mô thực vật nhưng yếu ở mô sinh sản. CaTLP1 tăng cường biểu hiện bởi mất nước và độ mặn cao, cũng như bởi điều trị với axit abscisic (ABA), cho thấy chức năng phản ứng stress của nó có thể liên quan đến mạng lưới phụ thuộc ABA. Biểu hiện quá mức CaTLP1 trong cây thuốc lá chuyển gen đã mang lại khả năng chịu đựng mất nước, hàm lượng muối và stress oxy hóa cùng với kiến trúc thân và rễ được cải thiện. Phân tích di truyền phân tử cho thấy sự biểu hiện khác nhau của CaTLP1 dưới điều kiện bình thường và stress, và biểu hiện ưu thế của nó trong nhân tế bào có thể liên quan đến khả năng chịu đựng stress được nâng cao. Công trình nghiên cứu của chúng tôi gợi ý vai trò quan trọng của CaTLP1 trong phản ứng với stress cũng như trong việc điều chỉnh sự phát triển của cây trồng.

Từ khóa

#đậu gà #CaTLP1 #protein phản ứng với mất nước #khả năng chịu đựng stress #axit abscisic #chuyển gen #di truyền phân tử

Tài liệu tham khảo

Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42 Araujo WL, Nunes-Nesi A, Osorio S, Usadel B, Fuentes D, Nagy R, Balbo I, Lehmann M, Studart-Witkowski C, Tohge T, Martinoia E, Jordana X, Damatta FM, Fernie AR (2011) Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture. Plant Cell 23:600–627 Banerjee P, Kleyn PW, Knowls JA, Lewis CA, Ross BM, Parano E, Kovats SG, Lee JJ, Penchaszadeh GK, Ott J, Jacobson SG, Gilliam TC (1998) TULP1 mutation in two extended Dominican kindreds with autosomal recessive retinitis pigmentosa. Nat Genet 18:177–179 Bartels D, Furini A, Ingram J, Salamini F (1996) Responses of plants to dehydration stress: a molecular analysis. Plant Growth Regul 20:111–118 Berg OG (1990) In: Revzin A (ed) The biology of nonspecific DNA-protein interactions. CRC Press, Boca Raton, pp 71–85 Bhushan D, Pandey A, Chattopadhyay A, Choudhary MK, Chakraborty S, Datta A, Chakraborty N (2006) Extracellular matrix proteome of chickpea (Cicer arietinum L.) illustrates pathway abundance, novel protein functions and evolutionary perspect. J Proteome Res 5:1711–1720 Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N (2007) Comparative proteomic analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics 11:1868–1884 Boggon TJ, Shan WS, Santagata S, Myers SC, Shapiro L (1999) Implication of tubby proteins as transcription factors by structure-based functional analysis. Science 286:2119–2125 Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341 Cagney G, Uetz P, Fields S (2000) High-throughput screening for protein–protein interactions using two-hybrid assay. Methods Enzymol 328:3–14 Carpita NC, Gibeaut D (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30 Carroll K, Gomez C, Shapiro L (2004) Tubby proteins: the plot thickens. Nat Rev Mol Cell Biol 5:55–63 Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384 Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant response to drought—from genes to the whole plant. Funct Plant Biol 30:239–264 Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S (2009) Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8:1579–1598 Clarke SE (2001) Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol 2:276–284 Clarke JD, Volko SM, Ledford H, Ausubel FM, Dong X (2000) Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12:2175–2190 Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743 Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signalling to jasmonate and ethylene responses. Plant Cell 14:1557–1566 Hagstrom SA, Duyao M, North MA, Li T (1999) Retinal degeneration in tulp1-/- mice: vesicular accumulation in the interphotoreceptor matrix. Invest Ophthalmol Vis Sci 40:2795–2802 He W, Ikeda S, Bronson RT, Yan G, Nishina PM, North MA, Naggert JK (2000) GFP-tagged expression and immunohistochemical studies to determine the subcellular localization of the tubby gene family members. Mol Brain Res 81:109–117 Hobbs SL, Kpodar P, DeLong CM (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864 Ikeda S, He W, Ikeda A, Naggert JK, North MA, Nishina PM (1999) Cell-specific expression of tubby gene family members (tub, Tulp1, 2, and 3) in the retina. Invest Ophthalmol Vis Sci 40:2706–2712 Ikeda A, Ikeda S, Gridley T, Nishina PM, Naggert JK (2001) Neural tube defects and neuro epithelial cell death in Tulp3 knockout mice. Hum Mol Genet 10:1325–1334 Ikeda A, Nishina PM, Naggert JK (2002) The tubby-like proteins, a family with roles in neuronal development and function. J Cell Sci 115:9–14 Jhonson PF, McKnight SL (1989) Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem 58:799–839 Kapeller R, Moriarty A, Strauss A, Stubdal H, Theriault K, Siebert E, Chickering T, Morgenstern JP, Tartaglia LA, Lillie J (1999) Tyrosine phosphorylation of tub and its association with Src homology 2 domain-containing proteins implicate tub in intracellular signalling by insulin. J Biol Chem 274:24980–24986 Kipreos ET, Pagano M (2000) The F-box protein family. Genome Biol 1:3002.1–3002.7 Kleyn PW, Fan W, Kovats SG, Lee JJ, Pulido JC, Wu Y, Berkemeier LR, Misumi DJ, Holmgren L, Charlat O, Woolf EA, Tayber O, Brody T, Shu P, Hawkins F, Kennedy B, Baldini L, Ebeling C, Alperin GD, Deeds J, Lakey ND, Culpepper J, Chen H, Glücksmann-Kuis MA, Carlson GA, Duyk GM, Moore KJ (1996) Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family. Cell 85:281–290 Kou Y, Qiu D, Wang L, Li X, Wang S (2009) Molecular analyses of the rice tubby-like protein gene family and their response to bacterial infection. Plant Cell Rep 28:113–121 Krek W (1998) Proteolysis and the G1-S transition: the SCF connection. Curr Opin Genet Dev 8:36–42 Lai CP, Lee CL, Chen PH, Wu SH, Yang CC, Shaw JF (2004) Molecular analysis of the Arabidopsis TUBBY-like protein gene family. Plant Physiol 134:1586–1597 Liu Q (2008) Identification of rice TUBBY-like genes and their evolution. FEBS J 275:163–171 Noben-Trauth K, Naggert JK, North MA, Nishina PM (1996) A candidate gene for the mouse mutation tubby. Nature 380:534–538 Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A, Chakraborty S, Chakraborty N (2010) Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res 6:3443–3464 Patton EE, Willems AR, Sa D, Kuras L, Thomas D, Craig KL, Tyers M (1998) Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev 12:692–705 Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156 Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome wide comparative analysis among eukaryotes. Science 290:2105–2110 Roelfsema MRG, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol 167:665–691 Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York Santagata S, Boggon TJ, Baird CL, Gomez CA, Zhao J, Shan WS, Myszka DG, Shapiro L (2001) G-protein signalling through tubby proteins. Science 292:2041–2050 Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146 Slabas AR, Ndimba B, Simon WJ, Chivasa S (2004) Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locations. Biochem Soc Trans 32:524–528 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 Vogel JP, Raab TK, Somerville CR, Somerville SC (2004) Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J 40:968–978 Yang Z, Zhou Y, Wang X, Gu S, Yu J, Liang G, Yan C, Xu C (2008) Genomewide comparative phylogenetic and molecular evolutionary analysis of tubby-like protein family in Arabidopsis, rice, and poplar. Genomics 92:246–253 Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651 Zgallai H, Steppe K, Lemeur R (2005) Photosynthetic, physiological and biochemical responses of tomato plants to polyethylene glycol-induced water deficit. J Integrat Plant Biol 47:1470–1478 Zhang Y, Xu W, Li Z, Deng XW, Wu W, Xue Y (2008) F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis thaliana. Plant Physiol 148:2121–2133