Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự biểu hiện quá mức của BvNHX1, một gen chống vận chuyển Na+/H+ từ tonoplast mới từ củ cải đường (Beta vulgaris), mang lại khả năng chịu mặn cao hơn cho thuốc lá chuyển gen
Journal of Plant Biochemistry and Biotechnology - Trang 1-13 - 2023
Tóm tắt
Độ mặn là một trong những yếu tố môi trường chính hạn chế sự phát triển của cây trồng và năng suất thu hoạch trên toàn cầu. Các transporter Na+/H+ ở tonoplast (NHXs) đóng vai trò quan trọng trong việc điều chỉnh sự ổn định nội bào Na+/K+ và pH, điều này là rất cần thiết cho khả năng chịu mặn cũng như sự phát triển của cây. Trong nghiên cứu này, một gen mới có tên BvNHX1 mã hóa cho vận chuyển Na+/H+ ở tonoplast đã được phân lập từ cây trồng ưa mặn củ cải đường (Beta vulgaris) và được đặc trưng chức năng trên cây thuốc lá (Nicotiana tabacum) để đánh giá hành vi của các sinh vật chuyển gen trong phản ứng với stress mặn. Kết quả cho thấy việc biểu hiện quá mức BvNHX1 đã nâng cao đáng kể khả năng chịu mặn ở cây thuốc lá chuyển gen so với cây giống hoang dã (WT). Sự nảy mầm của hạt, chiều dài rễ, chiều cao cây, và trọng lượng tươi cũng như trọng lượng khô của cây chuyển gen đều cao đáng kể so với cây WT dưới tình trạng stress mặn. Hàm lượng nước tương đối trong lá, chlorophyll, proline, đường hòa tan, và protein hòa tan đều cao hơn một cách đáng kể so với cây WT, trong khi đó hàm lượng malondialdehyde (MDA) thấp hơn so với cây WT dưới stress mặn. Hàm lượng Na+ và K+ ở cả chồi và rễ của cây chuyển gen cao đáng kể so với cây WT, và cây chuyển gen duy trì tỷ lệ K+/Na+ cân bằng trong điều kiện mặn. Tóm lại, những kết quả này cho thấy rằng việc biểu hiện quá mức BvNHX1 đã giảm thiểu thiệt hại cho màng tế bào bằng cách giảm áp suất thẩm thấu của tế bào, duy trì hàm lượng nước tương đối và hàm lượng chlorophyll của lá, và cuối cùng cải thiện khả năng chịu mặn ở cây thuốc lá chuyển gen.
Từ khóa
#mặn #cây trồng #BvNHX1 #khả năng chịu mặn #thuốc lá #gen chuyển genTài liệu tham khảo
Al-Harrasi I, Jana GA, Patankar HV, Al-Yahyai R, Rajappa S, Kumar PP, Yaish MW (2020) A novel tonoplast Na+/H+ antiporter gene from date palm (PdNHX6) confers enhanced salt tolerance response in Arabidopsis. Plant Cell Rep 39:1079–1093
Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96:5862–5867
Allakhverdiev SI, Sakamoto A, Nishiyama Y, Murata N (2000) Inactivation of photosystems I and II in response to osmotic stress in Synechococcus. Plant Physiol 122:1201–1208
Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509
Bao AK, Wang YW, Xi JJ, Liu C, Zhang JL, Wang SM (2014) Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation. Funct Plant Biol 41:203–214
Barłóg P (2013) The soil Na concentration as a background of fertilizer Na recommendation: a case of sugar beet. Acta Agr Scand 63:206–218
Bassil E, Zhang S, Gong H, Tajima H, Blumwald E (2019) Cation specificity of vacular NHX-type cation/H+ antiporter. Plant Phsiol 179:616–629
Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Cao B, Xia Z, Hao Z, Liu C, Long D, Fan W, Zhao A (2021) The C-terminal tail of the plant endosomal-type NHXs plays a key role in its function and stability. Plant Sci 303:110791
Chanroj S, Wang G, Venema K, Zhang MW, Delwiche CF, Sze H (2012) Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Front Plant Sci 3:25
Charfeddine S, Charfeddine M, Hanana M, Gargouri-Bouzid R (2019) Ectopic expression of a grape vine vacuolar NHX antiporter enhances transgenic potato plant tolerance to salinity. J Plant Biochem Biot 28:50–62
Chen GH, Yan W, Yang LF, Gai JY, Zhu YL (2014) Overexpression of StNHX1, a novel vacuolar Na+/H+ antiporter gene from Solanum torvum, enhance salt toleracne in tansgenic vegetable soybean. Hort Environ Biotechnol 55(3):213–221
Chen X, Bao H, Guo J, Jia W, Li Y (2015) Overexpression of SeNHX1 improves both salt tolerance and disease resistance in tobacco. Plant Signal Behav 10:e993240
De Laporte AV, Ripplinger DG (2018) Economic viability of energy (Beta vulgaris) as advanced biofuel feedstocks. Ind Crop Prod 111:254–260
Debez A, Belghith I, Friesen J, Montzka C, Elleuche S (2017) Facing the challenge of sustainable bioenergy production: Could halophytes be part of the solution? J Biol Eng 11:27
Dohm JC, Minoche AE, Holtgräwe D, Salvador CG, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz BF, Stadler P, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–552
Dong H, Wang C, Xing C, Yang T, Yan J, Cao J, Li D, Wang R, Blumwald E, Zhang S, Huang X (2019) Overexpression of PbrNHX2 gene, a Na+/H+ antiporter gene isolated from Pyrus betulaefolia, confers enhanced tolerance to salt stress via muduling ROS levels. Plant Sci 285:14–25
Dong J, Liu C, Wang Y, Zhao Y, Ge D, Yuan Z (2021) Genome-wide identification of the NHX gene family in Punica granatum L. and their expressional patterns under salt stress. Agronomy 11:264
Fan W, Deng G, Wang H, Zhang H, Zhang P (2015) Elevated compartmentalization of Na+ into vacuoles improves salt and cold stresstolerance in sweet potato (Ipomoea batatas). Physiol Plant 154:560–571
Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963
Flowers TJ, Colmer TD (2015) Plant salt tolerance: Adaptations in halophytes. Ann Bot 115:327–331
Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431
Gálvez FJ, Baghour M, Hao G, Cagnac O, Rodríguez-Rosales MP, Venema K (2012) Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant Physiol Bioch 51:109–115
Geng G, Yang J (2015) Sugar beet production and industry in China. Sugar Tech 17:3265–3272
Geng X, Chen S, Yilan E, Zhang W, Mao H, Qiqige A, Wang Y, Qi Z, Lin X (2020) Overexpression of a tonoplast Na+/H+ antiporter from the halophytic shrub Nitraria sibirica improved salt tolerance and root development in transgenic poplar. Tree Genet Genomes 16:81
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930
Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42
Hasan MN, Bhuiyan FH, Hoque H, Jewel NA, Ashrafuzzaman M, Prodhan SH (2022) Ectopic expression of Vigna radiata’s vacuolar Na+/H+ antiporter gene (VrNHX1) in indica rice (Oryza sativa L.). Biotech Rep 35:e0074
Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31
Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: A review. Plant Signal Behav 7:1456–1466
Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231
Huang L, Li Z, Sun C, Yin S, Wang B, Duan T, Liu Y, Li J, Pu G (2022) Genome-wide identification, molecular characterization, and gene expression analyses of honeysuckle NHX antiporters suggest their involvement in salt stress adaptation. PeerJ 10:e13214
Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64:2255–2268
Jegadeeson V, Kumari K, Pulipati S, Parida A, Venkataraman G (2019) Expression of wild rice Porteresia coarctata PcNHX1 antiporter gene (PcNHX1) in tobacco controlled by PcNHX1 promoter (PcNHX1p) confers Na+-specific hypocotyl elongation and stem-specific Na+ accumulation in transgenic tobacco. Plant Physiol Bioch 139:161–170
Jha A, Joshi M, Yadav NS, Agarwal PK, Jha B (2011) Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 38:1965–1973
Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE 8:e71136
Jin T, An J, Xu H, Chen J, Pan L, Zhao R, Wang N, Gai J, Li Y (2022) A soybean sodium/hydrogen exchanger GmNHX6 confers plant alkaline salt tolerance by regulating Na+/K+ homeostasis. Front Plant Sci 13:938635
Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of [△]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394
Kobayashi NI, Yamaji N, Yamamoto H, Okubo K, Ueno H, Costa A, Tanoi K, Matsumura H, Fujii-Kashino M, Horiuchi T, Nayef MA, Shabala S, An G, Ma JF, Horie T (2017) OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant J 91:657–670
Kronzucker HJ, Coskun D, Schulze LM, Wong JR, Britto DT (2013) Sodium as nutrient and toxicant. Plant Soil 369:1–23
Li H, Liu W, Yang QS, Lin J, Chang YH (2018) Isolation and comparative analysis of two Na+/H+ antiporter NHX2 genes from Pyrus betulaefolia. Plant Mol Biol Rep 36:439–450
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408
Long L, Zhao JR, Guo XN, Xu FC, Yang WW, Gao W (2020) Identification of NHXs in Gossypium species and the positive role of GhNHX1 in salt tolerance. BMC Plant Biol 20:147
Ma XL, Zhang Q, Shi HZ, Zhu JK, Zhao YX, Ma CL, Zhang H (2004) Molecular cloning and different expression of a vacuolar Na+/H+ antiporter gene in Suaeda salsa under salt stress. Biol Plant 48:219–225
Ma W, Ren Z, Zhou Y, Zhao J, Zhang F, Feng J, Liu W, Ma X (2020) Genome-wide identification of the Gossypium hirsutum NHX genes reveals that the endosomal-type GhNHX4A is critical for the salt tolerance of cotton. Int J Mol Sci 21:7712
Maathuis FJ, Ahmad I, Patishtan J (2014) Regulation of Na+ fluxes in plants. Front Plant Sci 5:467
Mishra A, Tanna B (2017) Halophytes: Potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681
Mushke R, Yarra R, Kirti PB (2019) Improved salinity tolerance and growth performance in transgenic sunflower plants via ectopic expression of a wheat antiporter gene (TaNHX2). Mol Biol Rep 46:5941–5953
Pardo EM, Toum L, Pérez-Borroto LS, Fleitas L, Gallino JP, Machi S, Vojnov A, Castagnaro AP, Welin B (2021) Ectopic expression of GmNHX3 and GmNHX1, encoding two Glycine max Na+/H+ vacuolar antiporters, improves water deficit tolerance in Arabidopsis thaliana. Biol Plant 65:157–166
Paul A, Chatterjee A, Subrahmanya S, Shen G, Mishra N (2021) NHX gene family in Camellia sinensis: In-silico genome-wide identification, expression profiles, and regulatory network analysis. Front Plant Sci 12:777884
Peever TL, Higgins VJ (1989) Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and non-specific elicitors from Cladosporium fluvum. Plant Physiol 90:867–875
Priya P, Patil M, Pandey P, Singh A, Babu V, Senthil-Kumar M (2023) Stress combinations and their interactions in plants database: A one-stop resource on combined stress responses in plants. Plant J 116(4):1097–1117
Pu L, Lin R, Zou T, Wang Z, Zhang M, Jian S (2021) Genome-wide identification, primary functional characterization of the NHX gene family in Canavalia rosea, and their possible roles for adaption to tropic coral reefs. Genes 13:33
Qiu N, Chen M, Guo J, Bao H, Ma X, Wang B (2007) Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C3 halophyte Suaeda salsa. Plant Sci 172:1218–1225
Rasouli F, Kiani-Pouya A, Li L, Zhang H, Chen Z, Hedrich R, Shabala S (2020) Sugar beet (Beta vulgaris) guard cells responses to salinity stress: A proteomic analysis. Int J Mol Sci 21(7):2331
Reguera M, Bassil E, Blumwald E (2014) Intracellular NHX-type cation/H+ antiporters in plants. Mol Plant 7:261–263
Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars: Metabolism, sensing, and abiotic stress: A complex network in the life of plants. Plant Signal Behav 4:388–393
Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotech 26:115–124
Saddhe HH, Kumar K (2019) Molecular cloning, expression analysis, and heterologous characterization of a novel sodium/hydrogen exchanger from a mangrove plant. Rhizophora Apiculata Plant Gene 19:100192
Sandhu D, Pudussery MV, Kaundal R, Suarez DL, Kaundal A, Sekhon RS (2017) Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula. Funct Integr Genom 18:141–153
Shabala S (2013) Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221
Shen C, Yuan J, Li X, Chen R, Li D, Wang F, Liu X, Li XZ (2023) Genome-wide identification of NHX (Na+/H+ antiporter) gene family in Cucurbita L. and functional analysis of CmoNHX1 under salt stress. Front Plant Sci 14:1136810
Skorupa M, Golebiewski M, Kurnik K, Niedojadlo J, Kesy J, Klamkowski K, Tyburski J (2019) Salt stress vs. salt shock-the case of sugar beet and its halophytic ancestor. BMC Plant Biol 19:57
Smulders MJ, Esselink GD, Everaert I, Riek JD, Vosman B (2010) Characterisation of sugar beet (Beta vulgaris L. ssp. vulgaris) varieties using microsatellite markers. BMC Genet 11:41
Solis CA, Yong MT, Zhou M, Venkataraman G, Shabala L, Holford P, Shabala S, Chen ZH (2022) Evolutionary significance of NHX family and NHX1 in salinity stress adaptation in the Genus Oryza. Int J Mech Sci 23:2092
Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527
Tian Y, Fan L, Thurau T, Jung C, Cai D (2004) The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. J Mol Evol 58:40–53
Wakeel A (2013) Potassium-sodium interactions in soil and plant under saline-sodic conditions. J Plant Nutr Soil Sci 176:344–354
Wang L, Ma YK, Li NN, Zhang WB, Mao HP, Lin XF (2016) Isolation and characterization of a tonoplast Na+/H+ antiporter from the halophyte Nitraria sibirica. Biol Plant 60:113–122
Wang H, Ding Q, Wang H (2018) A new Na+/H+ antiporter gene KvNHX1 isolated from the halophyte Kosteletzkya virginica improves salt tolerance in transgenic tobacco. Biotechnol Biotech Eq 32(6):1378–1386
Witham FH, Blaydes DF, Devlin RM (1971) Experiments in plant physiologyogy. Int J Plant Sci 5:1619–1624
Wu GQ, Feng RJ, Liang N, Yuan HJ, Sun WB (2015a) Sodium chloride stimulates growth and alleviates sorbitol-induced osmotic stress in sugar beet seedlings. Plant Growth Regul 75:307–316
Wu GQ, Shui QZ, Wang CM, Zhang JL, Yuan HJ, Li SJ, Liu ZJ (2015b) Characteristics of Na+ uptake in sugar beet (Beta vulgaris L.) seedlings under mild salt conditions. Acta Physiol Plant 37:70
Wu GQ, Feng RJ, Wang SM, Wang CM, Bao AK, Wei L, Yuan HJ (2015c) Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1–1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.). Front Plant Sci 6:581
Wu GQ, Wang JL, Li SJ (2019a) Genome-wide identification of Na+/H+ antiporter (NHX) genes in sugar beet (Beta vulgaris L.) and their regulated expression under salt stress. Genes 10:401
Wu GQ, Lin LY, Jiao Q, Li SJ (2019b) Tetraploid exhibits more tolerant to salinity than diploid in sugar beet (Beta vulgaris L.). Acta Physiol Plant 41:52
Xu K, Hong P, Luo L, Xia T (2009) Overexpression of AtNHX1, a vacuolar Na+/H+ antiporter from Arabidopsis thalina, in Petunia hybrida enhances salt and drought tolerance. J Plant Biol 52:453–461
Yamaguchi T, Hamamoto S, Uozumi N (2013) Sodium transport system in plant cells. Front Plant Sci 4:410
Yang Y, Guo Z, Liu Q, Tang J, Huang S, Dhankher OP, Yuan H (2018) Growth, physiological adaptation, and NHX gene expression analysis of Iris halophila under salt stress. Environ Sci Pollut Res 25:25207–25216
Yarra R (2019) The wheat NHX gene family: Potential role in improving salinity stress tolerance of plants. Plant Gene 18:100178
Yarra R, Kirti PB (2019) Expressing class I wheat NHX (TaNHX2) gene in eggplant (Solanum melongena L.) improves plant performance under saline condition. Funct Integr Genomics 19:541–554
Yarra R, He SJ, Abbagani S, Ma B, Bulle M, Zhang WK (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tiss Organ Cult 111:49–57
Zelm E, Zhang Y, Testerink C (2020) Salt tolarance mechanisms of plants. Annu Rev Biol 71:403–433
Zeng Y, Li Q, Wang H, Zhang J, Du J, Feng H, Blumwald E, Yu L, Xu G (2018) Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress. Plant Biotch 16:310–321
Zhang YM, Zhang HM, Liu ZH, Li HC, Guo XL, Li GL (2015) The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium. Plant Mol Biol 87:317–327
Zhang ZJ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2016) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27–34
