Việc biểu hiện quá mức của osa-miR171c làm giảm khả năng chịu đựng stress muối ở cây lúa

Journal of Plant Biology - Tập 60 - Trang 485-492 - 2017
Wu Yang1,2, Tian Fan1, Xiaoying Hu1, Taihui Cheng3, Mingyong Zhang1
1Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
2University of Chinese Academy of Sciences, Beijing, China
3Panyu District Research Station of Agricultural Sciences, Guangzhou, China

Tóm tắt

Gia đình miRNA171 là một trong những gia đình miRNA được bảo tồn tốt và vai trò của nó dưới các điều kiện căng thẳng vẫn chưa được biết đến, ngoại trừ sự biểu hiện của nó trong các phân tích biểu hiện toàn bộ bộ gen. Osa-miR171c được kích thích bởi nồng độ muối cao (150 mM NaCl). Một đột biến dh của cây lúa với sự biểu hiện quá mức của osa-miR171c, được kích hoạt bởi sự chèn T-DNA, đã làm giảm đáng kể khả năng chịu đựng muối trong các giai đoạn nảy mầm và cây con. Hiện tượng này đã được xác nhận qua cây lúa biến đổi gen biểu hiện quá mức osa-miR171c. So sánh với giống hoang dã (WT), đột biến dh giảm lượng proline tự do và tăng tỷ lệ mất nước sau khi điều trị bằng muối. Mật độ khí khổng trong biểu bì lá của đột biến dh cũng tăng cao. Hơn nữa, đột biến dh tăng độ nhạy cảm với điều trị ABA. Một số gen đáp ứng với stress đã bị giảm điều chỉnh ở đột biến dh so với WT dưới điều kiện stress muối. Những kết quả này chỉ ra rằng osa-miR171c tham gia vào việc điều chỉnh các thay đổi sinh lý, phát triển khí khổng, các con đường phụ thuộc vào ABA và biểu hiện của các gen liên quan đến stress; từ đó, có thể góp phần vào việc chịu đựng muối.

Từ khóa

#osa-miR171c #stress muối #cây lúa #biểu hiện gen #khí khổng #ABA

Tài liệu tham khảo

Abrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in arabidopsis. Plant Mol Biol 51:363–372 Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–349 Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297 Covarrubias AA, Reyes JL (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ 33:481–489 Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442 Curaba J, Talbot M, Li ZY, Helliwell C (2013) Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. Bmc Plant Biol 13:6 Du H, Wang NL, Cui F, Li XH, Xiao JH, Xiong LZ (2010) Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304–1318 Fan T, Li XM, Yang W, Xia KF, Jie OY, Zhang MY (2015) Rice osamiR171c mediates phase change from vegetative to reproductive development and shoot apical meristem maintenance by repressing four OsHAM transcription factors. Plos One 10: e0125833 Fattash I, Voss B, Reski R, Hess WR, Frank W (2007) Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol 7:13 Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, Ji W, Guo D, Zhu Y (2010) Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231:991–1001 Hartung W, Schraut D, Jiang F (2005) Physiology of abscisic acid (ABA) in roots under stress-a review of the relationship between root ABA and radial water and ABA flows. Aust J Agr Res 56:1253–1259 Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza-Sativa L.) mediated by agrobacterium and sequence-analysis of the boundaries of the T-DNA. Plant J 6:271–282 Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. P Natl Acad Sci USA 103:12987–12992 Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, Xiong LZ (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181 Hwang EW, Shin SJ, Yu BK, Byun MO, Kwon HB (2011) miR171 family members are involved in drought response in solanum tuberosum. J Plant Biol 54:43–48 Khraiwesh B, Zhu JK, Zhu JH (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Bba-Gene Regul Mech 1819:137–148 Li M, Guo L, Guo C, Wang L, Chen L (2016) Over-expression of a DUF1644 protein gene, SIDP361, enhances tolerance to salt stress in transgenic rice. J Plant Biol 59:62–73 Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. Rna 14:836–843 Liu J, Zhang F, Zhou JJ, Chen F, Wang BS, Xie XZ (2012) Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol 78:289–300 Liu XY, Widmer A (2014) Genome-wide comparative analysis of the GRAS gene family in populus, Arabidopsis and rice. Plant Mol Biol Rep 32:1129–1145 Liu YC, Sun J, Wu YR (2016) Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res 129:955–962 Mao X, Zhang H, Tian S, Chang X, Jing R (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61:683–696 Mundy J, Chua NH (1988) Abscisic-acid and water-stress induce the expression of a novel rice gene. Embo J 7:2279–2286 Pandey GK, Grant JJ, Cheong YH, Kim BG, Li LG, Luan S (2005) ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol 139:1185–1193 Poethig RS (2009) Small RNAs and developmental timing in plants. Curr Opin Genet Dev 19:374–378 Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROWLIKE genes. Plant J 18:111–119 Skriver K, Mundy J (1990) Gene-expression in response to abscisicacid and osmotic-stress. Plant Cell 2:503–512 Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811 Suriya-arunroj D, Supapoj N, Toojinda T, Vanavichit A (2004) Relative leaf water content as an efficient method for evaluating rice cultivars for tolerance to salt stress. ScienceAsia 30:411–415 Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genom 284:173–183 Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660 Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. BBA-Mol Cell Res 1803:1231–1243 Wang L, Mai YX, Zhang YC, Luo QA, Yang HQ (2010) MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol Plant 3:794–806 Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. Plos One 3:e1829 Xia KF, Wang R, Ou XJ, Fang ZM, Tian CE, Duan J, Wang YQ, Zhang MY (2012) OsTIR1 and OsAFB2 downregulation via osmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in Rice. Plos One 7:364–373 Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952 Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cisacting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94 Yoshida S, Forno DA, Cook JH, Gomez KA (1976) Routine procedures for growing rice plants in culture solution, In S Yoshida, DA Forno, JH Cook, KA Gomez, eds, Laboratory Manual for Physiological Studies of Rice. International Rice Research Institute, Los Banos, Philippines, pp 61–66 Zhang BH, Wang QL, Pan XP (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289 Zhao BT, Liang RQ, Ge LF, Li W, Xiao HS, Lin HX, Ruan KC, Jin YX (2007) Identification of drought-induced microRNAs in rice. Biochem Bioph Res Co 354:585–590 Zhou M, Li DY, Li ZG, Hu Q, Yang CH, Zhu LH, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–1391