Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice

Honghong Hu1, Mingqiu Dai2, Jialing Yao3, Benze Xiao2, Xianghua Li2, Qifa Zhang2, Lizhong Xiong2
1National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Wuhan 430070, China.
2*National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
3College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

Tóm tắt

Drought and salinity are major abiotic stresses to crop production. Here, we show that overexpression of stress responsive gene SNAC1 ( STRESS-RESPONSIVE NAC 1 ) significantly enhances drought resistance in transgenic rice (22–34% higher seed setting than control) in the field under severe drought stress conditions at the reproductive stage while showing no phenotypic changes or yield penalty. The transgenic rice also shows significantly improved drought resistance and salt tolerance at the vegetative stage. Compared with WT, the transgenic rice are more sensitive to abscisic acid and lose water more slowly by closing more stomatal pores, yet display no significant difference in the rate of photosynthesis. SNAC1 is induced predominantly in guard cells by drought and encodes a NAM, ATAF, and CUC (NAC) transcription factor with transactivation activity. DNA chip analysis revealed that a large number of stress-related genes were up-regulated in the SNAC1 -overexpressing rice plants. Our data suggest that SNAC1 holds promising utility in improving drought and salinity tolerance in rice.

Từ khóa


Tài liệu tham khảo

N. Deng Rev. China Agric. Sci. Technol. 1, 3–8 (1999).

10.1016/S1369-5266(00)80068-0

10.1104/pp.011021

10.1146/annurev.arplant.53.091401.143329

10.1016/S1369-5266(03)00092-X

10.1016/S0958-1669(03)00030-2

10.1104/pp.102.011007

10.2307/3869871

10.1111/j.1365-313X.2004.02125.x

10.1016/S1360-1385(01)01983-5

10.1016/S1369-5266(02)00289-3

10.1126/science.290.5499.2105

10.1146/annurev.arplant.50.1.571

10.1073/pnas.0401572101

K. Yamaguchi-Shinozaki, K. Shinozaki Plant Cell 6, 251–264 (1994).

10.1002/j.1460-2075.1991.tb07704.x

10.1074/jbc.275.3.1723

10.1073/pnas.190309197

10.1038/7036

10.1104/pp.006478

10.1046/j.1365-313x.2001.00947.x

J. M. Park, C. J. Park, S. B. Lee, B. K. Ham, R. Shin, K. H. Paek Plant Cell 13, 1035–1046 (2001).

10.1093/dnares/10.6.239

10.1105/tpc.104.022699

10.1016/S0092-8674(00)81093-4

10.1105/tpc.9.6.841

10.1016/S0092-8674(00)80902-2

10.1101/gad.852200

10.1023/A:1010639225091

10.1111/j.1365-313X.2004.02171.x

10.1023/B:PLAN.0000006944.61384.11

10.1007/PL00008647

10.1101/gr.3657405

10.1111/j.1365-313X.2005.02463.x

10.1007/s00122-004-1731-8

10.1534/genetics.105.045062

10.1007/s00122-002-1131-x

10.1023/A:1014805625790

10.1046/j.1365-313X.1997.12051103.x

10.1104/pp.104.047837

10.1105/tpc.001792

10.1105/tpc.021832

10.1016/j.cub.2005.05.048

10.1016/j.cub.2005.06.041

10.1038/nbt766

10.1046/j.1365-313X.1994.6020271.x

10.1071/BI9620413