Over-precise Predictions Cannot Identify Good Choice Models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bell, D. E. (1982). Regret in decision making under uncertainty. Operations Research, 30(5), 961–981.
Bhatia, S. (2014). Sequential sampling and paradoxes of risky choice. Psychonomic Bulletin & Review, 21(5), 1095–1111.
Bhatia, S., & Loomes, G. (2017). Noisy preferences in risky choice: A cautionary note. Psychological Review, 124(5), 678–687.
Bishop, C. M. (2006). Pattern recognition and machine learning (VOL 4). Springer.
Bourgin, D.D., Peterson, J.C., Reichman, D., Russell, S.J., Griffiths, T.L. (2019). Cognitive model priors for predicting human decisions. International Conference on Machine Learning (pp 5133–5141).
Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic: Making choices without trade-offs. Psychological Review, 113(2), 409–432.
Bruhin, A., Fehr-Duda, H., & Epper, T. (2010). Risk and rationality: Uncovering heterogeneity in probability distortion. Econometrica, 78(4), 1375–1412.
Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100(3), 432–459.
Chuang, Y., & Schechter, L. (2015). Stability of experimental and survey measures of risk, time, and social preferences: A review and some new results. Journal of Development Economics, 117, 151–170.
Cichy, R. M., & Kaiser, D. (2019). Deep neural networks as scientific models. Trends in Cognitive Sciences, 23(4), 305–317.
Diecidue, E., & Van De Ven, J. (2008). Aspiration level, probability of success and failure, and expected utility. International Economic Review, 49(2), 683–700.
Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., Roth, A. (2015). Generalization in adaptive data analysis and holdout reuse. Advances in Neural Information Processing Systems (pp 2350–2358).
Erev, I., Ert, E., Plonsky, O., Cohen, D., & Cohen, O. (2017). From anomalies to forecasts: Toward a descriptive model of decisions under risk, under ambiguity, and from experience. Psychological Review, 124(4), 369–409.
Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S. M., Hau, R., Hertwig, R., Stewart, T., West, R., & Lebiere, C. (2010). A choice prediction competition: Choices from experience and from description. Journal of Behavioral Decision Making, 23(1), 15–47.
Farquhar, P. H. (1984). State of the art|utility assessment methods. Management Science, 30(11), 1283–1300.
Fishburn, P. C. (1977). Mean-risk analysis with risk associated with belowtarget returns. The American Economic Review, 67(2), 116–126.
Fudenberg, D., Kleinberg, J., Liang, A., Mullainathan, S. (2019). Measuring the completeness of theories. arXiv:1910.07022
Glimcher, P. W., & Rustichini, A. (2004). Neuroeconomics: the consilience of brain and decision. Science, 306(5695), 447–452.
Glöckner, A., Fiedler, S., Hochman, G., Ayal, S., & Hilbig, B. (2012). Processing differences between descriptions and experience: A comparative analysis using eye-tracking and physiological measures. Frontiers in Psychology, 3, 173.
Glöckner, A., & Pachur, T. (2012). Cognitive models of risky choice: Parameter stability and predictive accuracy of prospect theory. Cognition, 123(1), 21–32.
Gluth, S., Kern, N., Kortmann, M., & Vitali, C. L. (2020). Value-based attention but not divisive normalization in uences decisions with multiple alternatives. Nature Human Behaviour, 4(6), 634–645.
Gonzalez, C., & Dutt, V. (2011). Instance-based learning: integrating sampling and repeated decisions from experience. Psychological Review, 118(4), 523–551.
Handa, J. (1977). Risk, probabilities, and a new theory of cardinal utility. Journal of Political Economy, 85(1), 97–122.
He, L., Analytis, P. P., & Bhatia, S. (2021). The wisdom of model crowds. Management Science, 68(5), 3635–3659.
Hertwig, R., & Erev, I. (2009). The description experience gap in risky choice. Trends in Cognitive Sciences, 13(12), 517–523.
Hills, T. T., & Hertwig, R. (2010). Information search in decisions from experience: Do our patterns of sampling foreshadow our decisions? Psychological Science, 21(12), 1787–1792.
Jia, J., Dyer, J. S., & Butler, J. C. (2001). Generalized disappointment models. Journal of Risk and Uncertainty, 22(1), 59–78.
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.
Kuhn, T.S. (1970). The structure of scientific revolutions (Vol. 111). Chicago University of Chicago Press.
Landis, J.R., & Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics, 159-174.
Lattimore, P. K., Baker, J. R., & Witte, A. D. (1992). The in uence of probability on risky choice: A parametric examination. Journal of Economic Behavior & Organization, 17(3), 377–400.
Loken, E., & Gelman, A. (2017). Measurement error and the replication crisis. Science, 355(6325), 584–585.
Luce, R.D., & Suppes, P. (1965). Preference, utility, and subjective probability.
Markant, D., Pleskac, T.J., Diederich, A., Pachur, T., Hertwig, R. (2015). Modeling choice and search in decisions from experience: A sequential sampling approach. In: 37th Annual Meeting of the Cognitive Science Society (pp. 1512-1517).
Maxwell, S. E., Lau, M. Y., & Howard, G. S. (2015). Is psychology suffering from a replication crisis? What does “failure to replicate’’ really mean? American Psychologist, 70(6), 487–498.
Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman, D., & Griffiths, T. L. (2021). Using large-scale experiments and machine learning to discover theories of human decision-making. Science, 372(6547), 1209–1214.
Plonsky, O., Apel, R., Ert, E., Tennenholtz, M., Bourgin, D. D., Peterson, J. C., Reichman, D., Griffiths, T. L., Russell, S. J., Carter, E. C., Cavanagh, J. F., Erev, I. (2019). Predicting human decisions with behavioral theories and machine learning. arXiv: abs/1904.06866
Plonsky, O., Erev, I., Hazan, T., Tennenholtz, M. (2017). Psychological forest: Predicting human behavior. AAAI conference on Artifficial Intelligence.
Recht, B., Roelofs, R., Schmidt, L., Shankar, V. (2019). Do imagenet classifiers generalize to imagenet? International conference on machine learning (pp. 5389-5400).
Roelofs, R., Fridovich-Keil, S., Miller, J., Shankar, V., Hardt, M., Recht, B., Schmidt, L. (2019). A meta-analysis of overfitting in machine learning. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems (pp. 9179-9189).
Sepulveda, P., Usher, M., Davies, N., Benson, A. A., Ortoleva, P., & De Martino, B. (2020). Visual attention modulates the integration of goal-relevant evidence and not value. Elife, 9, e60705.
Smith, S. M., & Krajbich, I. (2019). Gaze amplifies value in decision making. Psychological Science, 30(1), 116–128.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929–1958.
Srivastava, N., Muller-Trede, J., Schrater, P., Vul, E. (2016). Modeling sampling duration in decisions from experience. In: 38th Annual Meeting of the Cognitive Science Society.
Stark, P. B., & Saltelli, A. (2018). Cargo-cult statistics and scientific crisis. Significance, 15(4), 40–43.
Stewart, N., Chater, N., & Brown, G. D. (2006). Decision by sampling. Cognitive Psychology, 53(1), 1–26.
Stewart, N., Hermens, F., & Matthews, W. J. (2016). Eye movements in risky choice. Journal of Behavioral Decision Making, 29(2–3), 116–136.
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.
Wall, L., Gunawan, D., Brown, S. D., Tran, M.-N., Kohn, R., & Hawkins, G. E. (2021). Identifying relationships between cognitive processes across tasks, contexts, and time. Behavior Research Methods, 53(1), 78–95.
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122.