Outcomes of patients treated with a biodegradable-polymer sirolimus-eluting stent versus durable-polymer everolimus-eluting stents after rotational atherectomy
Tóm tắt
To compare Orsiro biodegradable-polymer sirolimus-eluting stent (Orsiro BP-SES) with durable-polymer everolimus-eluting stent (DP-EES) regarding target lesion failure (TLF) after rotational atherectomy (RA), with a focus on small stents (diameter ≤ 3 mm) where Orsiro BP-SES has 60 µm strut thickness, while DP-EES remains with 81 µm strut thickness. New-generation drug-eluting stent (DES) is superior to early-generation DES in all percutaneous coronary intervention (PCI) settings including RA. Recently, the Orsiro BP-SES was superior to a DP-EES in an all comer’s population. Among patients who underwent RA at a single center, 121 were treated with Orsiro BP-SES and 164 with DP-EES (Promus and Xience). Those treated with other stent types, presenting with acute myocardial infarction or had a chronic total occlusion were excluded. Incidence of TLF was assessed. After 2 years, the TLF rate in Orsiro BP-SES and DP-EES groups was 10% and 18%, respectively (adjusted HR 0.55, 95%CI 0.26–1.16, p = 0.115). The rate of TLF was significantly lower in small Orsiro BP-SES with ultra-thin struts as compared to DP-EES with the same diameters (adjusted HR 0.19, 95% CI 0.04–0.87, p = 0.032), driven by lower rates of clinically driven target lesion revascularization (log-rank p = 0.022). Age (p = 0.035), total stent length (p = 0.007) and diabetes mellitus (p = 0.011) emerged as independent predictors of TLF in the whole population. In the whole cohort, Orsiro BP-SES and DP-EES had comparable rates of long-term TLF after RA. In the small stent subgroup, the Orsiro BP-SES with ultra-thin struts showed significant lower rate of TLF at 2 years.
Tài liệu tham khảo
Genereux P, Madhavan MV, Mintz GS et al (2014) Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes. Pooled analysis from the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) and ACUITY (acute catheterization and urgent intervention triage strategy) trials. J Am Coll Cardiol 63(18):1845–1854
Takebayashi H, Kobayashi Y, Mintz GS et al (2005) Intravascular ultrasound assessment of lesions with target vessel failure after sirolimus-eluting stent implantation. Am J Cardiol 95(4):498–502. https://doi.org/10.1016/j.amjcard.2004.10.020
Kobayashi Y, Okura H, Kume T et al (2014) Impact of target lesion coronary calcification on stent expansion. Circ J 78(9):2209–2214. https://doi.org/10.1253/circj.cj-14-0108
Madhavan MV, Tarigopula M, Mintz GS et al (2014) Coronary artery calcification: pathogenesis and prognostic implications. J Am Coll Cardiol 63(17):1703–1714. https://doi.org/10.1016/j.jacc.2014.01.017
Barbato E, Carrie D, Dardas P et al (2015) European expert consensus on rotational atherectomy. EuroIntervention 11(1):30–36. https://doi.org/10.4244/EIJV11I1A6
Barbato E, Shlofmitz E, Milkas A et al (2017) State of the art: evolving concepts in the treatment of heavily calcified and undilatable coronary stenoses—from debulking to plaque modification, a 40-year-long journey. EuroIntervention 13(6):696–705. https://doi.org/10.4244/EIJ-D-17-00473
Dill T, Dietz U, Hamm CW et al (2000) A randomized comparison of balloon angioplasty versus rotational atherectomy in complex coronary lesions (COBRA study). Eur Heart J 21(21):1759–1766. https://doi.org/10.1053/euhj.2000.2242
Moussa I, Di Mario C, Moses J et al (1997) Coronary stenting after rotational atherectomy in calcified and complex lesions. Angiographic and clinical follow-up results. Circulation 96(1):128–136. https://doi.org/10.1161/01.cir.96.1.128
Allali A, Holy EW, Sulimov DS et al (2018) Long-term clinical outcome of early generation versus new-generation drug-eluting stents in 481 patients undergoing rotational atherectomy: a retrospective analysis. Cardiology and therapy 7(1):89–99. https://doi.org/10.1007/s40119-017-0101-y
Jensen LO, Thayssen P, Christiansen EH et al (2016) Safety and efficacy of everolimus- versus sirolimus-eluting stents: 5-year results from SORT OUT IV. J Am Coll Cardiol 67(7):751–762. https://doi.org/10.1016/j.jacc.2015.11.051
Byrne RA, Stone GW, Ormiston J et al (2017) Coronary balloon angioplasty, stents, and scaffolds. Lancet 390(10096):781–792. https://doi.org/10.1016/S0140-6736(17)31927-X
Joner M, Finn AV, Farb A et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48(1):193–202. https://doi.org/10.1016/j.jacc.2006.03.042
Saito S, Toelg R, Witzenbichler B et al (2019) BIOFLOW-IV, a randomised, intercontinental, multicentre study to assess the safety and effectiveness of the Orsiro sirolimus-eluting stent in the treatment of subjects with de novo coronary artery lesions: primary outcome target vessel failure at 12 months. EuroIntervention 15(11):e1006–e1013. https://doi.org/10.4244/EIJ-D-18-01214
Kandzari DE, Mauri L, Koolen JJ et al (2017) Ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BIOFLOW V): a randomised trial. Lancet 390(10105):1843–1852. https://doi.org/10.1016/S0140-6736(17)32249-3
Windecker S, Haude M, Neumann FJ et al (2015) Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent: results of the randomized BIOFLOW-II trial. Circ Cardiovasc Interv 8(2):e001441. https://doi.org/10.1161/CIRCINTERVENTIONS.114.001441
Buiten RA, Ploumen EH, Zocca P et al (2019) Outcomes in patients treated with thin-strut, very thin-strut, or ultrathin-strut drug-eluting stents in small coronary vessels: a prespecified analysis of the randomized BIO-RESORT trial. JAMA cardiology 4(7):659–669. https://doi.org/10.1001/jamacardio.2019.1776
Kereiakes DJ, Meredith IT, Windecker S et al (2015) Efficacy and safety of a novel bioabsorbable polymer-coated everolimus-eluting coronary stent: the EVOLVE II randomized trial. Circ Cardiovasc Interv. https://doi.org/10.1161/CIRCINTERVENTIONS.114.002372
Abdel-Wahab M, Toelg R, Byrne RA et al (2018) High-speed rotational atherectomy versus modified balloons prior to drug-eluting stent implantation in severely calcified coronary lesions. Circ Cardiovasc Interv 11(10):e007415. https://doi.org/10.1161/CIRCINTERVENTIONS.118.007415
Thygesen K, Alpert JS, Jaffe AS et al (2012) Third universal definition of myocardial infarction. Circulation 126(16):2020–2035. https://doi.org/10.1161/CIR.0b013e31826e1058
Garcia-Garcia HM, McFadden EP, Farb A et al (2018) Standardized end point definitions for coronary intervention trials: the academic research consortium-2 consensus document. Eur Heart J 39(23):2192–2207. https://doi.org/10.1093/eurheartj/ehy223
Iglesias JF, Roffi M, Degrauwe S et al (2017) Orsiro cobalt-chromium sirolimus-eluting stent: present and future perspectives. Expert Rev Med Devices 14(10):773–788. https://doi.org/10.1080/17434440.2017.1378091
Kawamoto H, Panoulas VF, Sato K et al (2015) Impact of strut width in periprocedural myocardial infarction: a propensity-matched comparison between bioresorbable scaffolds and the first-generation sirolimus-eluting stent. JACC Cardiovasc Interv 8(7):900–909. https://doi.org/10.1016/j.jcin.2015.02.011
Hausleiter J, Kastrati A, Mehilli J et al (2003) Impact of lesion complexity on the capacity of a trial to detect differences in stent performance: results from the ISAR-STEREO trial. Am Heart J 146(5):882–886. https://doi.org/10.1016/S0002-8703(03)00435-6
Torii S, Jinnouchi H, Sakamoto A et al (2019) Vascular responses to coronary calcification following implantation of newer-generation drug-eluting stents in humans: impact on healing. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz850
Liu Y, Liu Y, Zheng Y et al (2019) Catheter thermal energy generation and temperature in rotational atherectomy. Med Eng Phys 70:29–38. https://doi.org/10.1016/j.medengphy.2019.06.014
Abdel-Wahab M, Richardt G, Joachim Buttner H et al (2013) High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (rotational atherectomy prior to taxus stent treatment for complex native coronary artery disease) trial. JACC Cardiovasc Interv 6(1):10–19. https://doi.org/10.1016/j.jcin.2012.07.017
Pilgrim T, Heg D, Roffi M et al (2014) Ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable polymer everolimus-eluting stent for percutaneous coronary revascularisation (BIOSCIENCE): a randomised, single-blind, non-inferiority trial. Lancet 384(9960):2111–2122. https://doi.org/10.1016/S0140-6736(14)61038-2
Cassese S, Ndrepepa G, Byrne RA et al (2018) Outcomes of patients treated with ultrathin-strut biodegradable polymer sirolimus-eluting stents versus fluoropolymer-based everolimus-eluting stents: a meta-analysis of randomised trials. EuroIntervention 14(2):224–231. https://doi.org/10.4244/EIJ-D-18-00024
Pilgrim T, Piccolo R, Heg D et al (2018) Ultrathin-strut, biodegradable-polymer, sirolimus-eluting stents versus thin-strut, durable-polymer, everolimus-eluting stents for percutaneous coronary revascularisation: 5-year outcomes of the BIOSCIENCE randomised trial. Lancet 392(10149):737–746. https://doi.org/10.1016/S0140-6736(18)31715-X
Lefevre T, Haude M, Neumann FJ et al (2018) Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent: 5-year outcomes of the randomized BIOFLOW-II trial. JACC Cardiovasc Interv 11(10):995–1002. https://doi.org/10.1016/j.jcin.2018.04.014
Teeuwen K, van der Schaaf RJ, Adriaenssens T et al (2017) Randomized multicenter trial investigating angiographic outcomes of hybrid sirolimus-eluting stents with biodegradable polymer compared with everolimus-eluting stents with durable polymer in chronic total occlusions: the PRISON IV trial. JACC Cardiovasc Interv 10(2):133–143. https://doi.org/10.1016/j.jcin.2016.10.017
Iglesias JF, Muller O, Heg D et al (2019) Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in patients with ST-segment elevation myocardial infarction (BIOSTEMI): a single-blind, prospective, randomised superiority trial. Lancet 394(10205):1243–1253. https://doi.org/10.1016/S0140-6736(19)31877-X
Pache J, Kastrati A, Mehilli J et al (2003) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol 41(8):1283–1288. https://doi.org/10.1016/s0735-1097(03)00119-0
Kolandaivelu K, Swaminathan R, Gibson WJ et al (2011) Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation 123(13):1400–1409. https://doi.org/10.1161/CIRCULATIONAHA.110.003210
Elezi S, Dibra A, Mehilli J et al (2006) Vessel size and outcome after coronary drug-eluting stent placement: results from a large cohort of patients treated with sirolimus- or paclitaxel-eluting stents. J Am Coll Cardiol 48(7):1304–1309. https://doi.org/10.1016/j.jacc.2006.05.068
Cassese S, Byrne RA, Tada T et al (2014) Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography. Heart 100(2):153–159. https://doi.org/10.1136/heartjnl-2013-304933
Kastrati A, Mehilli J, Dirschinger J et al (2001) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103(23):2816–2821. https://doi.org/10.1161/01.cir.103.23.2816
Bangalore S, Toklu B, Patel N et al (2018) Newer-generation ultrathin strut drug-eluting stents versus older second-generation thicker strut drug-eluting stents for coronary artery disease. Circulation 138(20):2216–2226. https://doi.org/10.1161/CIRCULATIONAHA.118.034456
Iglesias JF, Heg D, Roffi M et al (2019) Long-term effect of ultrathin-strut versus thin-strut drug-eluting stents in patients with small vessel coronary artery disease undergoing percutaneous coronary intervention: a subgroup analysis of the BIOSCIENCE randomized trial. Circ Cardiovasc Interv 12(8):e008024. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008024
Serruys PW, Farooq V, Kalesan B et al (2013) Improved safety and reduction in stent thrombosis associated with biodegradable polymer-based biolimus-eluting stents versus durable polymer-based sirolimus-eluting stents in patients with coronary artery disease: final 5-year report of the LEADERS (limus eluted from a durable versus erodable stent coating) randomized, non-inferiority trial. JACC Cardiovasc Interv 6(8):777–789. https://doi.org/10.1016/j.jcin.2013.04.011
Kufner S, Byrne RA, Valeskini M et al (2016) Five-year outcomes from a trial of three limus-eluting stents with different polymer coatings in patients with coronary artery disease: final results from the ISAR-TEST 4 randomised trial. EuroIntervention 11(12):1372–1379. https://doi.org/10.4244/EIJY14M11_02
El-Hayek G, Bangalore S, Casso Dominguez A et al (2017) Meta-analysis of randomized clinical trials comparing biodegradable polymer drug-eluting stent to second-generation durable polymer drug-eluting stents. JACC Cardiovasc Interv 10(5):462–473. https://doi.org/10.1016/j.jcin.2016.12.002
Dan K, Garcia-Garcia HM, Kolm P et al (2020) Comparison of ultrathin, bioresorbable-polymer sirolimus-eluting stents and thin, durable-polymer everolimus-eluting stents in calcified or small vessel lesions. Circ Cardiovasc Interv 13(9):e009189. https://doi.org/10.1161/CIRCINTERVENTIONS.120.009189
Toelg R, Slagboom T, Waltenberger J et al (2020) Individual patient data analysis of the BIOFLOW study program comparing safety and efficacy of a bioresorbable polymer sirolimus eluting stent to a durable polymer everolimus eluting stent. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.29254
Mintz GS, Guagliumi G (2017) Intravascular imaging in coronary artery disease. Lancet 390(10096):793–809. https://doi.org/10.1016/S0140-6736(17)31957-8