Outbreak of a Tornado with Tropical Cyclone Yaas (2021) Formed over the Bay of Bengal

Springer Science and Business Media LLC - Tập 59 - Trang 59-67 - 2022
Nasreen Akter1, M. Rafiuddin1
1Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh

Tóm tắt

A tornado outbreak occurred in West Bengal (WB), India, about 15–16 h before the landfall of Cyclone Yaas formed in May 2021 over the Bay of Bengal. High-resolution analysis data have been used to investigate the possible tornadoes in terms of environmental conditions connecting to the cyclone. The WB tornado is found as intense as EF2–3 on the tornado scale and is likely associated with a mini-supercell. The total shear of 37 m s−1 from 0–6 km above ground level (AGL) with strong clockwise rotation, the moderate instability (1504 J kg−1) and the energy helicity index of 2.2 are the substantial convective parameters related to the WB tornado. Moreover, the favorable environment owning intense bulk shear, a larger value of storm-relative environmental helicity in the lowest 1 km AGL and high values of significant tornado parameter (STP) urge the potentiality of multiple tornadoes spawning in multi-days accompanying the landfalling Cyclone Yaas. The right-front quadrant of the cyclone is found to be more vulnerable for developing moderate to severe tornadoes within its rainbands. The positive potential vorticity anomalies evidence the cloud-scale cyclonic circulation from surface to 400 hPa with the maximum in the mid-level.

Tài liệu tham khảo

Akter, N.: Mesoscale convection and bimodal cyclogenesis over the Bay of Bengal. Mon. Wea. Rev. 143, 3495–3517 (2015). https://doi.org/10.1175/MWR-D-14-00260.1 Akter, N., Tsuboki, K.: Characteristics of supercells in the rainband of numerically simulated cyclone Sidr. SOLA. 6A, 25–28 (2010). https://doi.org/10.2151/sola.6A-007 Assessment Capacities Project (ACAPS): India: Cyclone Yaas. Briefing note, pp. 1–3. https://www.acaps.org/sites/acaps/files/products/files/20210601_acaps_start_briefing_note_india_cyclone_yaas.pdf (2021) Accessed 17 July 2021 Bikos, D., Finch, J., Case, J.L.: The environment associated with significant tornadoes in Bangladesh. Atmos. Res. 167, 183–195 (2016). https://doi.org/10.1016/j.atmosres.2015.08.002 Brooks, H.E., Craven, J.P.: A database of proximity soundings for significant severe thunderstorms, 1957–1993. Preprints, 21st Conference on Severe Local Storms, pp. 643–646. American Meteorological Society, San Antonio, Texas (2002) Bunkers, M.J.: Vertical wind shear associated with left-moving supercells. Wea. Forecasting. 17, 845–855 (2002). https://doi.org/10.1175/1520-0434(2002)017<0845:VWSAWL>2.0.CO;2 Burgess, D.W., Lee, R.R., Parker, S.S., Floyd, D.L.: A study of mini supercells observed by WSR-88D radars. Preprints, 27th Conference on Radar Meteorology, pp. 4−6. American Meteorological Society, Vail, CO (1995) Davies-Jones, R., Burgess, D., Foster, M.: Test of helicity as a forecast parameter. Preprints, 16th Conf. on severe local storms, pp. 588–592. American Meteorological Society, Kananaskis Park, AB, Canada (1990) Fujita, T.T., Watanabe, K., Tsuchitya, K., Shimada, M.: Typhoon-associated tornadoes in Japan and new evidence of suction vortices in a tornado near Tokyo. J. Meteorol. Soc. Jpn. 50, 431–453 (1972). https://doi.org/10.2151/jmsj1965.50.5_431 Galway, J.G.: The lifted index as a predictor of latent instability. Bull. Am. Meteorol. Soc. 37, 528–529 (1956). https://doi.org/10.1175/1520-0477-37.10.528 George, J.J.: Weather forecasting for aeronautics. Academic, New York (1960) Grieser, J.: Convection parameters. Selbstverl, Germany (2012) Hart, J.A., Korotky, W.: The SHARP workstation v1.50 users guide. pp. 30. NOAA, U.S. Department of Commerce, National Weather Service (1991) India Blooms, India: Ahead of Cyclone Yaas, 2 people electrocuted in Bengal Tornado, 40 houses destroyed. https://www.indiablooms.com/news-details/N/72356/ahead-of-cyclone-yaas-2-people-electrocuted-in-bengal-tornado-40-houses-destroyed.html (2021) Accessed 17 July 2021 International Federation of Red Cross and Red Crescent Societies (IFRC): Bangladesh: Cyclone Yaas. Operation Update Report, pp. 1–18. https://reliefweb.int/sites/reliefweb.int/files/resources/MDRBD027du1.pdf (2021) Accessed 17 July 2021 Koch, E., Koh, J., Davison, A.C., Lepore, C., Tippett, M.K.: Trends in the extremes of environments associated with severe U.S. thunderstorms. J. Clim. 34, 1259–1272 (2021). https://doi.org/10.1175/JCLI-D-19-0826.1 Malardel, S., Wedi, N., Deconinck, W., Diamantakis, M., Kuhnlein, C., Mozdzynski, G., Hamrud, M., Smolarkiewicz, P.: A new grid for the IFS. Newsletter No. 146 - Winter 2015/16, pp. 23–28. European Centre for Medium-Range Weather Forecasts, Reading (2015). https://data.ucar.edu/en/dataset/ecmwf-ifs-cy41r2-high-resolution-operational-forecasts. Accessed 12 June 2021 Markowski, P., Richardson, Y.: Mesoscale meteorology in the midlatitudes. Wiley-Blackwell, Hoboken (2010) McCaul, E.W., Jr: Buoyancy and shear characteristics of hurricane-tornado environments. Mon. Wea. Rev. 119, 1954–1978 (1991). https://doi.org/10.1175/1520-0493(1991)119<1954:BASCOH>2.0.CO;2 McCaul, E.W., Jr, Weisman, M.L.: Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev. 124, 408–429 (1996). https://doi.org/10.1175/15200493(1996)124<0408:SOSSSI>2.0.CO;2 Miller, R.C.: Notes on analysis and severe-storm forecasting procedures of the air force global weather Central. Weather Service Tech. Rep. 200 (Rev.), pp. 190. Scott Air Force Base, IL, Air Weather Service (1972) Mills, G.A., Colquhoun, J.R.: Objective prediction of severethunderstorm environments: preliminary results linking a decsion tree with an operational NWP model. Wea. Forecasting 13, 1078–1092 (1998). https://doi.org/10.1175/1520-0434(1998)013<1078:OPOSTE>2.0.CO;2 Moller, A.R., Doswell, C.A., Foster, M.P., Woodall, G.R.: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting. 9, 327–347 (1994). https://doi.org/10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2 Moore, T.W., Dixon, R.W.: A spatiotemporal analysis and description of Hurricane Ivan’s (2004) tornado clusters. Pap. Appl. Geogr. 1, 192–196 (2015). https://doi.org/10.1080/23754931.2015.1012449 Moore, T.W., Sokol, N.J., Blume, R.A.: Spatial distributions of tropical cyclone tornadoes by intensity and size characteristics. Atmosphere 8, 160 (2017). https://doi.org/10.3390/atmos8090160 Novlan, D.J., Gray, W.M.: Hurricane-spawned tornadoes. Mon. Wea. Rev. 102, 476–488 (1974). https://doi.org/10.1175/1520-0493(1974)102<0476:HST>2.0.CO;2 Ono, Y.: Climatology of tornadoes in Bangladesh, 1990–1994. J. Meteorol. 22, 325–340 (1997) Orlanski, I.: A rational subdivision of scales for atmospheric processes. Bull. Am. Meteorol. Soc. 56, 527–530 (1975) Schubert, W., Ruprecht, E., Hertenstein, R., Ferreira, R.N., Taft, R., Rozoff, C., Ciesielski, P., Kuo, H.-C.: English translations of twenty-one of Ertel’s papers on geophysical fluid dynamics. Meteorol. Z. 13, 527–576 (2004). https://doi.org/10.1127/0941-2948/2004/0013-0527 Suzuki, O., Niino, H., Ohno, H., Nirasawa, H.: Tornado producing mini supercells associated with Typhoon 9019. Mon. Wea. Rev. 128, 1868–1882 (2000). https://doi.org/10.1175/15200493(2000)128<1868:TPMSAW>2.0.CO;2 The Hindustan Times, India: Mini tornado hits villages of West Bengal before cyclone. https://www.Hindustantimes.com/cities/kolkata-news/mini-tornado-hits-villages-of-west-bengal-before-cyclone-101622068150190.html (2021) Accessed 17 July 2021 Thompson, R.L., Edwards, R., Hart, J.A., Elmore, K.L., Markowski, P.: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting. 18, 1243–1261 (2003). https://doi.org/10.1175/15200434(2003)018<1243:CPSWSE>2.0.CO;2 Weisman, M.L., Klemp, J.B.: The dependence of numerically simulated convective storms on vertical shear and buoyancy. Mon. Wea. Rev. 110, 504–520 (1982). https://doi.org/10.1175/15200493(1982)110<0504:TDONSC>2.0.CO;2 Weisman, M.L., Trapp, R.J.: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and sensitivity to environmental vertical wind shear. Mon. Wea. Rev. 131, 2779–2803 (2003). https://doi.org/10.1175/1520-0493(2003)131<2779:LMWSLA>2.0.CO;2 Weiss, S.J.: On the operational forecasting of tornadoes associated with tropical cyclones. Preprints, 14th Conference on Severe Local Storms, pp. 293–296. Indianapolis, IN, USA (1985) Yamane, Y., Hayashi, T., Dewan, A.M., Akter, F.: Severe local convective storms in Bangladesh: Part I Climatology. Atmos. Res. 95, 400–406 (2009). https://doi.org/10.1016/j.atmosres.2009.11.004