Oscillatory orbits in the restricted elliptic planar three body problem
Tóm tắt
Từ khóa
Tài liệu tham khảo
V. I. Arnold, 2006, <em>Dynamical Systems III</em>, volume 3 of <em>Encyclopaedia Math. Sci.</em>,, Springer
V. M. Alekseev, Quasirandom dynamical systems. I, II, III,, <em>Math. USSR</em>, 1968
V. I. Arnold, 1964, Instability of dynamical systems with several degrees of freedom,, <em>Sov. Math. Doklady</em>, 5, 581
I. Baldomá, 2004, Stable manifolds associated to fixed points with linear part equal to identity,, <em>J. Differential Equations</em>, 197, 45, 10.1016/j.jde.2003.07.005
I. Baldomá, 2007, The parametrization method for one-dimensional invariant manifolds of higher dimensional parabolic fixed points,, <em>Discrete Cont. Dyn. S.</em>, 17, 835, 10.3934/dcds.2007.17.835
S. Bolotin, 2006, Symbolic dynamics of almost collision orbits and skew products of symplectic maps,, <em>Nonlinearity</em>, 19, 2041, 10.1088/0951-7715/19/9/003
X. Cabré, 2003, The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces,, <em>Indiana Univ. Math. J.</em>, 52, 283, 10.1512/iumj.2003.52.2245
J. Chazy, 1922, Sur l'allure du mouvement dans le problème des trois corps quand le temps croît indéfiniment,, <em>Annales scientifiques de l'École Normale Supérieure</em>, 39, 29, 10.24033/asens.739
J. Cresson, 1997, A $\lambda$-lemma for partially hyperbolic tori and the obstruction property,, <em>Lett. Math. Phys.</em>, 42, 363, 10.1023/A:1007433819941
J. Cresson, 2001, The transfer lemma for Graff tori and Arnold diffusion time,, <em>Discrete Contin. Dynam. Systems</em>, 7, 787, 10.3934/dcds.2001.7.787
A. Delshams, 2000, A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of $\mathbbT^2$,, <em>Comm. Math. Phys.</em>, 209, 353, 10.1007/PL00020961
A. Delshams, 2006, <em>A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem: Heuristics and Rigorous Verification on a Model</em>,, Mem. Amer. Math. Soc., 10.1090/memo/0844
A. Delshams, 2008, Geometric properties of the scattering map of a normally hyperbolic invariant manifold,, <em>Adv. Math.</em>, 217, 1096, 10.1016/j.aim.2007.08.014
A. Delshams, 2013, Transition map and shadowing lemma for normally hyperbolic invariant manifolds,, <em>Discrete Contin. Dyn. Syst.</em>, 33, 1089, 10.3934/dcds.2013.33.1089
A. Delshams, 2014, Global instability in the elliptic restricted three body problem,, Preprint
E. Fontich, 2000, Differentiable invariant manifolds for partially hyperbolic tori and a lambda lemma,, <em>Nonlinearity</em>, 13, 1561, 10.1088/0951-7715/13/5/309
J. Galante, 2010, Destruction of invariant curves using the ordering condition,, Preprint
J. Galante, 2010, The method of spreading cumulative twist and its application to the restricted circular planar three body problem,, Preprint
J. Galante, 2011, Destruction of invariant curves in the restricted circular planar three-body problem by using comparison of action,, <em>Duke Math. J.</em>, 159, 275, 10.1215/00127094-1415878
A. Gorodetski, 2012, Hausdorff dimension of oscillatory motions for restricted three body problems,, Preprint
M. Guardia, 2016, Oscillatory motions for the restricted planar circular three body problem,, <em>Inventiones mathematicae</em>, 203, 417, 10.1007/s00222-015-0591-y
M. Gidea, 2004, Covering relations for multidimensional dynamical systems,, <em>J. Differential Equations</em>, 202, 32, 10.1016/j.jde.2004.03.013
M. Gidea, 2004, Covering relations for multidimensional dynamical systems. II,, <em>J. Differential Equations</em>, 202, 59, 10.1016/j.jde.2004.03.014
M. R. Herman, 1983, <em>Sur les Courbes Invariantes Par Les Difféomorphismes de L'anneau. Vol. 1</em>, volume 103 of <em>Astérisque</em>,, Société Mathématique de France
P. Le Calvez, 2007, Drift orbits for families of twist maps of the annulus,, <em>Ergodic Theory Dynam. Systems</em>, 27, 869, 10.1017/S0143385706000903
J. Llibre, 1980, Oscillatory solutions in the planar restricted three-body problem,, <em>Math. Ann.</em>, 248, 153, 10.1007/BF01421955
J. Llibre, 1980, Some homoclinic phenomena in the three-body problem,, <em>J. Differential Equations</em>, 37, 444, 10.1016/0022-0396(80)90109-6
J. P. Marco, 1996, Transition le long des chaî nes de tores invariants pour les systèmes hamiltoniens analytiques,, <em>Ann. Inst. H. Poincaré Phys. Théor.</em>, 64, 205
R. McGehee, 1973, A stable manifold theorem for degenerate fixed points with applications to celestial mechanics,, <em>J. Differential Equations</em>, 14, 70, 10.1016/0022-0396(73)90077-6
K. R. Meyer, 1992, <em>Introduction to Hamiltonian Dynamical Systems and the $N$-body Problem,</em>, Springer-Verlag, 10.1007/978-1-4757-4073-8
R. Moeckel, 1984, Heteroclinic phenomena in the isosceles three-body problem,, <em>SIAM Journal of Mathematical Analysis</em>, 15, 857, 10.1137/0515065
R. Moeckel, 2007, Symbolic dynamics in the planar three-body problem,, <em>Regul. Chaotic Dyn.</em>, 12, 449, 10.1134/S1560354707050012
J. Moser, 1973, <em>Stable and Random Motions in Dynamical Systems, with Special Emphasis on Celestial Mechanics</em>,, Princeton University Press
C. Robinson, 1984, Homoclinic orbits and oscillation for the planar three-body problem,, <em>J. Differential Equations</em>, 52, 356, 10.1016/0022-0396(84)90168-2
C. Robinson, 2015, Topological decoupling near planar parabolic orbits,, <em>Qualitative Theory of Dynamical Systems</em>, 14, 337, 10.1007/s12346-015-0130-7
L. Sabbagh, 2015, An inclination lemma for normally hyperbolic manifolds with an application to diffusion,, <em>Ergodic Theory Dynam. Systems</em>, 35, 2269, 10.1017/etds.2014.30
L. P. Šil'nikov, 1967, On a problem of Poincaré-Birkhoff,, <em>Mat. Sb. (N.S.)</em>, 74, 378
K. Sitnikov, 1960, The existence of oscillatory motions in the three-body problems,, <em>Soviet Physics. Dokl.</em>, 5, 647
Z. Xia, 1992, Mel'nikov method and transversal homoclinic points in the restricted three-body problem,, <em>J. Differential Equations</em>, 96, 170, 10.1016/0022-0396(92)90149-H