Oscillation results for a fractional order dynamic equation on time scales with conformable fractional derivative
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zheng, Z., Meng, F.: On oscillation properties for linear Hamiltonian systems. Rocky Mt. J. Math. 39(1), 343–358 (2009)
Huang, Y., Meng, F.: Oscillation criteria for forced second-order nonlinear differential equations with damping. J. Comput. Appl. Math. 224, 339–345 (2009)
Liu, H., Meng, F., Liu, P.: Oscillation and asymptotic analysis on a new generalized Emden–Fowler equation. Appl. Math. Comput. 219(5), 2739–2748 (2012)
Li, L., Meng, F., Zheng, Z.: Some new oscillation results for linear Hamiltonian systems. Appl. Math. Comput. 208, 219–224 (2009)
Zheng, Z., Wang, X., Han, H.: Oscillation criteria for forced second order differential equations with mixed nonlinearities. Appl. Math. Lett. 22, 1096–1101 (2009)
Liu, L., Bai, Y.: New oscillation criteria for second-order nonlinear neutral delay differential equations. J. Comput. Appl. Math. 231, 657–663 (2009)
Meng, F., Huang, Y.: Interval oscillation criteria for a forced second-order nonlinear differential equations with damping. Appl. Math. Comput. 218, 1857–1861 (2011)
Shao, J., Zheng, Z., Meng, F.: Oscillation criteria for fractional differential equations with mixed nonlinearities. Adv. Differ. Equ. 2013, 323 (2013)
Liu, H., Meng, F.: Oscillation criteria for second order linear matrix differential systems with damping. J. Comput. Appl. Math. 229(1), 222–229 (2009)
Liu, H., Meng, F.: Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent. Adv. Differ. Equ. 2016, 291 (2016)
Zheng, Z.: Oscillation criteria for matrix Hamiltonian systems via summability method. Rocky Mt. J. Math. 39(5), 1751–1766 (2009)
Feng, Q., Meng, F.: Oscillation of solutions to nonlinear forced fractional differential equations. Electron. J. Differ. Equ. 2013, 169 (2013)
Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990)
Wang, J., Meng, F., Gu, J.: Estimates on some power nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Adv. Differ. Equ. 2017, 257 (2017)
Liu, H.: A class of retarded Volterra–Fredholm type integral inequalities on time scales and their applications. J. Inequal. Appl. 2017, 293 (2017)
Agarwal, R.P., Bohner, M., O’Regan, D., Peterson, A.: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 141(1–2), 1–26 (2006)
Gu, J., Meng, F.: Some new nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 245, 235–242 (2014)
Meng, F., Shao, J.: Some new Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223, 444–451 (2013)
Wang, T., Xu, R.: Some integral inequalities in two independent variables on time scales. J. Math. Inequal. 6(1), 107–118 (2012)
Feng, Q., Meng, F., Zheng, B.: Gronwall–Bellman type nonlinear delay integral inequalities on times scales. J. Math. Anal. Appl. 382, 772–784 (2011)
Wang, T., Xu, R.: Bounds for some new integral inequalities with delay on time scales. J. Math. Inequal. 6(1), 1–12 (2012)
Du, L., Xu, R.: Some new Pachpatte type inequalities on time scales and their applications. J. Math. Inequal. 6(2), 229–240 (2012)
Feng, Q., Meng, F.: Generalized Ostrowski type inequalities for multiple points on time scales involving functions of two independent variables. J. Inequal. Appl. 2012, 74 (2012)
Feng, Q., Meng, F.: Some generalized Ostrowski–Grüss type integral inequalities. Comput. Math. Appl. 63, 652–659 (2012)
Bohner, M., Matthews, T.: The Grüss inequality on time scales. Commun. Math. Anal. 3(1), 1–8 (2007)
Feng, Q., Meng, F., Zhang, Y., Zheng, B., Zhou, J.: Some nonlinear delay integral inequalities on time scales arising in the theory of dynamics equations. J. Inequal. Appl. 2011, 29 (2011)
Xu, R., Meng, F., Song, C.: On some integral inequalities on time scales and their applications. J. Inequal. Appl. 2010, 464976 (2010)
Grace, S.R., Agarwal, R.P., Bohner, M., O’Regan, D.: Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3463–3471 (2009)
Saker, S.H.: Oscillation of third-order functional dynamic equations on time scales. Sci. China Math. 12, 2597–2614 (2011)
Agarwal, R.P., Bohner, M., Saker, S.H.: Oscillation of second order delay dynamic equations. Can. Appl. Math. Q. 13, 1–18 (2005)
Shi, Y., Han, Z., Sun, Y.: Oscillation criteria for a generalized Emden–Fowler dynamic equation on time scales. Adv. Differ. Equ. 2016, 3 (2016)
Hassan, T.S., Kong, Q.: Oscillation criteria for higher-order nonlinear dynamic equations with Laplacians and a deviating argument on time scales. Math. Methods Appl. Sci. 40(11), 4028–4039 (2017)
Erbe, L., Hassan, T.S., Peterson, A.: Oscillation of third-order functional dynamic equations with mixed arguments on time scales. J. Appl. Math. Comput. 34, 353–371 (2010)
Li, T., Saker, S.H.: A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales. Commun. Nonlinear Sci. Numer. Simul. 19, 4185–4188 (2014)
Han, Z., Li, T., Sun, S., Cao, F.: Oscillation criteria for third order nonlinear delay dynamic equations on time scales. Ann. Pol. Math. 99, 143–156 (2010)
Hassan, T.S.: Oscillation criteria for higher order quasilinear dynamic equations with Laplacians and a deviating argument. J. Egypt. Math. Soc. 25(2), 178–185 (2016)
Erbe, L., Hassan, T.S.: Oscillation of third order nonlinear functional dynamic equations on time scales. Differ. Equ. Dyn. Syst. 18(1), 199–227 (2010)
Sun, Y.B., Han, Z., Sun, Y., Pan, Y.: Oscillation theorems for certain third order nonlinear delay dynamic equations on time scales. Electron. J. Qual. Theory Differ. Equ. 2011, 75 (2011)
Agarwal, R.P., Bohner, M., Li, T.: Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math. Comput. 254, 408–418 (2015)
Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: A Philos-type theorem for third-order nonlinear retarded dynamic equations. Appl. Math. Comput. 249, 527–531 (2014)
Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: Oscillation criteria for second-order dynamic equations on time scales. Appl. Math. Lett. 31, 34–40 (2014)
Bohner, M., Hassan, T.S., Li, T.: Fite–Hille–Wintner-type oscillation criteria for second-order halflinear dynamic equations with deviating arguments. Indag. Math. 29(2), 548–560 (2018)
Bohner, M., Li, T.: Kamenev-type criteria for nonlinear damped dynamic equations. Sci. China Math. 58(7), 1445–1452 (2015)
Chatzarakis, G.E., Li, T.: Oscillation criteria for delay and advanced differential equations with nonmonotone arguments. Complexity 2018, 8237634 (2018)
Zhang, C., Agarwal, R.P., Bohner, M., Li, T.: Oscillation of fourth-order delay dynamic equations. Sci. China Math. 58(1), 143–160 (2015)
Agarwal, R.P., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535–557 (2001)
Benkhettou, N., Hassani, S., Torres, D.F.M.: A conformable fractional calculus on arbitrary time scales. J. King Saud Univ., Sci. 28, 93–98 (2016)
Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1988)
Hassan, T.S.: Oscillation of third order nonlinear delay dynamic equations on time scales. Math. Comput. Model. 49, 1573–1586 (2009)
Bohner, M.: Some oscillation criteria for first order delay dynamic equations. Far East J. Appl. Math. 18(3), 289–304 (2005)