Oscillation of third order nonlinear functional dynamic equations on time scales

Differential Equations and Dynamical Systems - Tập 18 - Trang 199-227 - 2010
Lynn Erbe1, Taher S. Hassan2, Allan Peterson1
1Department of Mathematics, University of Nebraska-Lincoln, Lincoln, USA
2Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt

Tóm tắt

It is the purpose of this paper to give oscillation criteria for the third order nonlinear functional dynamic equation $$ \left( {a\left( t \right)\left[ {\left( {r\left( t \right)x^\Delta \left( t \right)} \right)^\Delta } \right]^\gamma } \right)^\Delta + f\left( {t,x\left( {g\left( t \right)} \right)} \right) = 0 $$ on a time scale $$ \mathbb{T} $$ , where γ is the quotient of odd positive integers, a and r are positive rd-continuous functions on $$ \mathbb{T} $$ , and the function g: $$ \mathbb{T} \to \mathbb{T} $$ satisfies limt→∞ g(t) = ∞ and f ∈ C $$ \left( {\mathbb{T} \times \mathbb{R}, \mathbb{R}} \right) $$ . Our results are new for third order delay dynamic equations and extend many known results for oscillation of third order dynamic equations. Some examples are given to illustrate the main results.

Tài liệu tham khảo

Agarwal R., Bohner M. and Saker S. H., Oscillation of second order delay dynamic equations, Canad. Appl. Math. Quart., 13, 1–17, (2005) Bohner M. and Peterson A., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, (2001) Bohner M. and Peterson A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, (2003) Bohner M. and Saker S. H., Oscillation of second order half-linear dynamic equations on discrete time scales, Internat. J. Difference Equs., 1, 208–218, (2006) Gera M., Graef J. R. and Gregus M., On oscillatory and asymptotic properties of solutions of certain nonlinear third order differential equations, Nonlinear Anal., 32, 417–425, (1998) Došlý O. and Hilger E., A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales, Special Issue on Dynamic Equations on Time Scales (Agarwal P. P., Bohner M. and O’Regan D., eds.), J. Comp. Appl. Math., 141(1–2), 571–585, (2002) Elabbasy E. M. and Hassan T. S., Oscillation of third order nonlinear functional differential equations, Diff. Eq. Appl., submitted Erbe L., Hassan T. S. and Peterson A., Oscillation criteria for nonlinear damped dynamic equations on time scales, Appl. Math. Comp., 203, 343–357, (2008) Erbe L., Hassan T. S. and Peterson A., Oscillation criteria for nonlinear functional neutral dynamic equations on time scales, J. Diff. Eq. Appl., 15, 1097–1115, (2009) Erbe L., Hassan T. S., Peterson A. and Saker S. H., Oscillation criteria for half-linear delay dynamic equations on time scales, Nonlinear Dynam. Sys. Th., 9, 51–68, (2009) Erbe L., Hassan T. S., Peterson A. and Saker S. H., Oscillation criteria for sublinear half-linear delay dynamic equations on time scales, Int. J. Diff. Equ., 3, 227–245, (2008) Erbe L., Peterson A. and Saker S. H., Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales, J. Comp. Appl. Math., 181, 92–102, (2005) Erbe L., Peterson A. and Saker S. H., Hille and Nehari type criteria for third order dynamic equations, J. Math. Anal. Appl., 329, 112–131, (2007) Erbe L., Peterson A. and Saker S. H., Oscillation and asymptotic behavior a third-order nonlinear dynamic equation, Canad. Quart. Appl. Math., 14, 2, (2006) Hardy G. H., Littlewood J. E. and Polya G., Inequalities, second ed., Cambridge University Press, Cambridge, (1988) Hassan T. S., Oscillation criteria for half-linear dynamic equations on time scales, J. Math. Anal. Appl., 345, 176–185, (2008) Hilger S., Analysis on measure chains — a unified approach to continuous and discrete calculus, Results Math., 18, 18–56, (1990) Kac V. and Cheung P., Quantum Calculus, Universitext, (2002) Zhang B. G. and Deng X., Oscillation of delay differential equations on time scales, Math. Comp. Mod., 36, 1307–1318, (2002) Şahiner Y. and Stavroulakis I. S., Oscillation of first order delay dynamic equations, Dynam. Systems Appl., 15, 645–655, (2006) Wu H., Zhuang R. and Mathsen R. M., Oscillation criteria of second-order nonlinear neutral variable delay dynamic equations, Appl. Math. Comp., 178, 321–331, (2006)