Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Dao động và Tập trung trong Các Chuỗi Đo lường Bị Ràng buộc Bởi PDE
Tóm tắt
Chúng tôi chỉ ra rằng đối với các toán tử vi phân một phần hạng không đổi \(\mathscr {A}\) có các nón sóng trải rộng, các phép đo Young tổng quát sinh ra bởi các chuỗi bị chặn của các phép đo \(\mathscr {A}\)-tự do có thể được đặc trưng bởi sự đối ngẫu với các hàm tích phân \(\mathscr {A}\)-quasi-convex có độ tăng tuyến tính. Điều này bao gồm một đặc trưng về các hiệu ứng tập trung trong các chuỗi như vậy cho phép chúng tôi kết luận rằng, trong sự tương phản rõ rệt với các hiệu ứng dao động, sự tập trung luôn có cấu trúc \(\mathscr {A}\)-tự do.
Từ khóa
#Đo lường Young #toán tử vi phân #tác động tập trung #tác động dao động #tích phân quasi-convexTài liệu tham khảo
Alberti, G.: A Lusin type theorem for gradients. J. Funct. Anal. 100(1), 110–118, 1991
Alberti, G.: Rank one property for derivatives of functions with bounded variation. Proc. R. Soc. Edinb. Sect. A 123(2), 239–274, 1993
Alibert, J.J., Bouchitté, G.: Non-uniform integrability and generalized Young measures. J. Convex Anal. 4(1), 129–147, 1997
Arroyo-Rabasa, A.: Characterization of generalized Young measures generated by \(\cal{A}\)-free measures. arXiv:1908.03186 (version 11/09/2019) and Arch. Ration. Mech. Anal.242(1), 235–325, 2021
Arroyo-Rabasa, A., De Philippis, G., Rindler, F.: Lower semicontinuity and relaxation of linear-growth functionals under PDE constraints. Adv. Calc. Var. 13(3), 219–255, 2020
Baía, M., Matias, J., Santos, P.M.: Characterization of generalized Young measures in the A-quasiconvexity context. Indiana Univ. Math. J. 62(2), 487–521, 2013
Bogachev, V.I.: Measure Theory. Vol. I, II. Springer, Berlin. Vol. I: xviii+500 pp., Vol. II: xiv+575, 2007
Cid-Ruiz, Y., Homs, R. & Sturmfels, B. Primary Ideals and Their Differential Equations. Found Comput Math 21, 1363–1399 (2021). https://doi.org/10.1007/s10208-020-09485-6
Cid-Ruiz, Y., Sturmfels, B.: Primary decomposition with differential operators. arXiv:2101.03643 (version 13/01/2021).
Dacorogna, B.: Direct methods in the calculus of variations, 2nd edn. In: Applied Mathematical Sciences, vol. 78. Springer, New York, 2008
De Philippis, G., Rindler, F.: On the structure of \(\mathscr {A}\)-free measures and applications. Ann. Math. 2(184), 3, 1017–1039, 2016
De Philippis, G., Rindler, F.: Characterization of generalized Young measures generated by symmetric gradients. Arch. Ration. Mech. Anal. 224(3), 1087–1125, 2017
De Lellis, C., Székelyhidi, L., Jr.: The Euler equations as a differential inclusion. Ann. Math. 1417–1436, 2009
DiPerna, R.J., Majda, A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108, 667–689, 1987
Eisenbud, D.: Commutative algebra. With a view toward algebraic geometry. In: Graduate Texts in Mathematics, vol. 150. Springer, New York, 1995
Fonseca, I., Kružík, M.: Oscillations and concentrations generated by \({{\cal{A} }} \)-free mappings and weak lower semicontinuity of integral functionals. ESAIM Control Optim. Calc. Var. 16(2), 472–502, 2010
Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(L^ p\) Spaces. Springer, Berlin (2007)
Fonseca, I., Müller, S.: \(\cal{A} \)-quasiconvexity, lower semicontinuity, and young measures. SIAM J. Math. Anal. 30(6), 1355–1390, 1999
Fonseca, I., Müller, S., Pedregal, P.: Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29(3), 736–756, 1998
Guerra, A., Kristensen, J., Raiţă, B.: Oscillation and concentration under constant rank constraints. OxPDE Technical report 20.16, 2020
Guerra, A., Raiţă, B. Quasiconvexity, Null Lagrangians, and Hardy Space Integrability Under Constant Rank Constraints. Arch Rational Mech Anal 245, 279–320 (2022). https://doi.org/10.1007/s00205-022-01775-3
Guerra, A., Raiţă, B.: On the necessity of the constant rank condition for \( L^p \) estimates. C. R. Math. Acad. Sci. Paris 358(9–10), 1091–1095, 2020
Guerra, A., Raiţă, B., Schrecker, M. R.: Compensated compactness: continuity in optimal weak topologies. arXiv:2007.00564.
Härkönen, M., Nicklasson, L., Raiţă, B.: Syzygies, constant rank, and beyond. arXiv:2112.12663v1 [math.AP] 23 Dec, 2021
Hörmander, L.: The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Second edition. Springer Study Edition. Springer-Verlag, Berlin, 1990
Hörmander, L.: An Introduction to Complex Analysis in Severable Variables, 3rd edn. Elsevier, Academic Press (1990)
Kinderlehrer, D., Pedregal, P.: Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115(4), 329–365, 1991
Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4(1), 59–90, 1994
Kirchheim, B., Kristensen, J.: On rank one convex functions that are homogeneous of degree one. Arch. Ration. Mech. Anal. 221(1), 527–558, 2016
Kristensen, J.: Finite Functionals and Young Measures Generated by Gradients of Sobolev Functions. Technical University of Denmark. Department of Mathematics. Technical Report, August, 1994
Kristensen, J.: Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313(4), 653–710, 1999
Kristensen, J., Raiţă, B.: Concentration effects of BV gradients have gradient structure. arXiv:2112.10897v1 [math.AP] 20 Dec, 2021
Kristensen, J., Rindler, F.: Relaxation of signed integral functionals in BV. Calc. Var. Partial Diffe. Equ. 37(1–2), 29–62, 2010
Kristensen, J., Rindler, F.: Characterization of generalized gradient Young measures generated by sequences in \(\text{ W}^{1,1}\) and \(\text{ BV }\). Arch. Ration. Mech. Anal. 197(2), 539–598, 2010
Lee, J., Müller, P.F., Müller, S.: Compensated compactness, separately convex functions and interpolatory estimates between Riesz transforms and Haar projections. Commun. Partial Differ. Equ. 36, 2, 547–601, 2013
Manssour, R. A. E., Härkönen, M., Sturmfels, B.: Linear PDE with constant coefficients. https://doi.org/10.1017/S0017089521000355
Morrey, C. B., Jr.: Multiple integrals in the calculus of variations. Reprint of the 1966 edition [MR0202511]. Classics in Mathematics. Springer-Verlag, Berlin, 2008
Murat, F.: Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8, 1, 69–102, 1981
Müller, S.: On quasiconvex functions which are homogeneous of degree 1. Indiana Univ. Math. J. 41(1), 295–301, 1992
Müller, S.: Rank-one convexity implies quasiconvexity on diagonal matrices. Int. Math. Res. Not. 20, 1087–1095, 1999
Raiţă, B.: Constant rank operators: lower semi-continuity and \(\text{ L}^1\)-estimates. Doctoral dissertation, University of Oxford, 2018
Raiţă, B.: Potentials for \({\cal{A}}\)-quasiconvexity. Calc. Var. Partial Differ. Equ.58(3), Art. 105, 16, 2019
Raiţă, B.: A simple construction of potential operators for compensated compactness. arXiv:2112.11773v1 [math.AP] 22 Dec, 2021
Reshetnyak, Yu.G.: Weak convergence of completely additive vector functions on a set. Sibirsk. Mat. \(\breve{Z}\). 9, 1386–1394, 1968
Rindler, F., A local proof for the characterization of Young measures generated by sequences in BV. J. Funct. Anal.266, 2014
Rindler, F.: Calculus of variations. Universitext. Springer, Cham, 2018
Shankar, S.: Controllability and vector potential: six lectures at Steklov. arXiv:1911.01238, 2019
Sychev, M. A.: A new approach to Young measure theory, relaxation and convergence in energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(6), 773–812, 1999
Sychev, M.A.: Characterization of homogeneous gradient Young measures in case of arbitrary integrands. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29(3), 531–548, 2000
Székelyhidi, L., Wiedemann, E.: Young measures generated by ideal incompressible fluid flows. Arch. Ration. Mech. Anal. 206(1), 333–366, 2012
Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV, Res. Notes in Mathematics, vol. 39, pp. 773–812, 1979
