Osa‐miR164a targets <i>Os<scp>NAC</scp>60</i> and negatively regulates rice immunity against the blast fungus <i>Magnaporthe oryzae</i>

Plant Journal - Tập 95 Số 4 - Trang 584-597 - 2018
Zhaoyun Wang1,2, Yeqiang Xia1,2, Siyuan Lin1,2, Li Wang1,2, Baohuan Guo1,2, Xiaoning Song1,2, Shao-Chen Ding1,2, Liyu Zheng1,2, Ruiying Feng1,2, Shulin Chen1,2, Yalin Bao1,2, Cong Sheng1,2, Xin Zhang1,2, Jian Wu3, Dongdong Niu1,2, Hailing Jin4, Hongwei Zhao1,2
1Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
2The Key Laboratory of Integrated Management of Crop Diseases and Pests Ministry of Education Nanjing Jiangsu 210095 China
3Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
4Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA

Tóm tắt

SummaryExploring the regulatory mechanism played by endogenous rice miRNAs in defense responses against the blast disease is of great significance in both resistant variety breeding and disease control management. We identified rice defense‐related miRNAs by comparing rice miRNA expression patterns before and after Magnaporthe oryzae strain Guy11 infection. We discovered that osa‐miR164a expression reduced upon Guy11 infection at both early and late stages, which was perfectly associated with the induced expression of its target gene, OsNAC60. OsNAC60 encodes a transcription factor, over‐expression of which enhanced defense responses, such as increased programmed cell death, greater ion leakage, more reactive oxygen species accumulation and callose deposition, and upregulation of defense‐related genes. By using transgenic rice over‐expressing osa‐miR164a, and a transposon insertion mutant of OsNAC60, we showed that when the miR164a/OsNAC60 regulatory module was dysfunctional, rice developed significant susceptibility to Guy11 infection. The co‐expression of OsNAC60 and osa‐miR164a abolished the OsNAC60 activity, but not its synonymous mutant. We further validated that this regulatory module is conserved in plant resistance to multiple plant diseases, such as the rice sheath blight, tomato late blight, and soybean root and stem rot diseases. Our results demonstrate that the miR164a/OsNAC60 regulatory module manipulates rice defense responses to M. oryzae infection. This discovery is of great potential for resistant variety breeding and disease control to a broad spectrum of pathogens in the future.

Từ khóa


Tài liệu tham khảo

10.1105/tpc.9.6.841

10.1016/j.bbagrm.2013.10.005

10.1038/ni1253

10.1111/mpp.12035

10.1146/annurev.arplant.57.032905.105346

10.1126/science.1171647

10.1038/cr.2008.53

10.1016/j.gde.2012.04.004

10.1016/j.tplants.2011.04.003

10.1094/MPMI-18-0511

10.1371/journal.pgen.1006049

10.1016/j.cell.2006.02.008

10.1126/science.1164627

10.3389/fpls.2016.01891

10.1038/35081161

10.1111/j.1365-313X.2005.02586.x

10.1104/pp.108.127878

10.1104/pp.112.193672

10.1016/j.tplants.2013.07.002

10.1007/s00425-014-2115-1

10.1016/j.chom.2012.09.003

10.1093/jxb/ert429

10.1146/annurev.phyto.45.062806.094346

10.1093/jxb/eru072

10.1105/tpc.105.030841

10.1242/dev.075069

10.1007/s11103-007-9204-5

10.1038/nature05286

10.1038/emboj.2009.39

10.1105/tpc.106.046300

10.1146/annurev-phyto-073009-114457

10.1016/j.bbagrm.2011.05.001

10.1105/tpc.108.063123

10.1126/science.1166386

10.1038/nrm1358

10.1242/dev.01320

10.1186/s12284-014-0031-4

10.1111/nph.14371

10.1104/pp.109.151803

10.1073/pnas.1118282109

10.1104/pp.113.230052

10.1016/j.cell.2017.06.008

Li Y., 2017, Osa‐miR169 negatively regulates rice immunity against the blast fungus Magnaporthe oryzae, Front. Plant Sci., 8, 2

10.1016/j.plantsci.2006.07.019

10.1111/j.1364-3703.2009.00607.x

10.1093/mp/sst015

10.3389/fchem.2017.00096

10.1105/tpc.16.00650

10.1111/jipb.12306

10.1094/MPMI-07-10-0149

10.1094/Phyto-82-746

10.1146/annurev.arplant.54.031902.135035

10.1371/journal.ppat.1003670

10.1016/j.phytochem.2009.09.004

10.1016/j.cell.2008.02.034

10.1016/j.cub.2016.02.051

10.1111/j.1469-8137.2012.04310.x

10.1126/science.1126088

10.1094/MPMI-23-8-0991

10.1007/978-1-4939-2453-0_4

10.1016/j.pbi.2009.06.005

10.1105/tpc.112.105429

10.1016/j.tplants.2012.02.004

10.1016/j.molcel.2005.06.014

10.1371/journal.pgen.1005399

10.1534/genetics.105.044891

10.1111/j.1365-313X.2008.03483.x

10.1101/gad.1004402

10.1101/gad.1004402

10.1105/tpc.105.039834

10.1105/tpc.106.046250

10.1105/tpc.111.095380

10.1016/S0092-8674(00)81093-4

10.1186/1471-2229-8-25

10.1146/annurev.phyto.050908.135202

10.1094/MPMI-22-10-1227

10.1038/cr.2009.108

10.1105/tpc.006940

10.1101/gad.852200

10.1016/S0960-9822(03)00281-1

10.1371/journal.pone.0067413

10.1094/MPMI-03-14-0065-R

10.1111/j.1469-8137.2012.04241.x

10.1016/j.chom.2015.10.001

10.1101/gad.177527.111

10.1016/j.molcel.2011.04.010

10.1104/pp.17.01665

10.1186/1471-2229-9-149