OsSNDP3 Functions for the Polar Tip Growth in Rice Pollen Together with OsSNDP2, a Paralog of OsSNDP3

Rice - Tập 15 - Trang 1-12 - 2022
Sunok Moon1, Yu-Jin Kim2, Ha Eun Park1, Junhyup Kim1, Yun Shil Gho1, Woo-Jong Hong1, Eui-Jung Kim1, Su Kyoung Lee1, Byung-Chang Suh3, Gynheung An1, Ki-Hong Jung1
1Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
2Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang-si, Korea
3Department of Brain Sciences, DGIST, Daegu, Korea

Tóm tắt

Understanding pollen tube growth is critical for crop yield maintenance. The pollen tube provides a path for sperm cells for fertilization with egg cells. Cells must be subdivided into functionally and structurally distinct compartments for polar tip growth, and phosphoinositides are thought to be one of the facilitators for polarization during pollen tube growth. OsSNDP3 encodes Sec14-nodulin domain-containing protein and localizes in the nucleus and the microdomains of the plasma membrane in tobacco leaf epidermis cells. OsSNDP3 is thought to bind with phosphatidylinositol 4,5-bisphosphate based on the data including the information of basic amino acids in the C-terminal and colocalization with 2X Pleckstrin homology domain of Phospholipase C delta-1. OsSNDP3 interacts with a protein that contains a class I nodulin domain. We discovered that OsSNDP3 plays a significant role in pollen tube germination using CRISPR/Cas9 systems, whereas another pollen-preferential Sec14-nodulin domain-containing protein, OsSNDP2, additively functions with OsSNDP3 during pollen tube germination. Gene Ontology analysis using downregulated genes in ossndp3 indicated that the expression of genes involved in the phosphatidylinositol metabolic process and tip growth was significantly altered in ossndp3. OsSNDP3 aids pollen polar tip growth by binding with phosphatidylinositol 4,5-bisphosphate. We can better understand the roles of phosphoinositides during pollen tube growth by studying the functions of OsSNDP3 and OsSNDP2. And downregulated genes in ossndp3 might be useful targets for future research on polar tip growth.

Tài liệu tham khảo

Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PRJ, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Curr Biol 7(4):261–269 An S, Park S, Jeong DH, Lee DY, Kang HG, Yu JH et al (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133:2040–2047 Braun M, Baluska F, von Witsch M, Menzel D (1999) Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta 209:435–443 Cao P, Jung KH, Choi D, Hwang D, Ronald PC (2012) The rice oligonucleotide array database: an atlas of rice gene expression. Rice 5:17 Chandran AKN, Hong W-J, Abhijith B, Lee J, Kim Y-J, Park SK, Jung K-H (2020) Rice male gamete expression database (RMEDB): a web resource for functional genomic studies of rice male organ development. J Plant Biol 63:421–430 Chen S-q, Zhong W, Liu M-x, Xie Z-w, Wang H-h (2008) Pollen grain germination and pollen tube growth in pistil of rice. Rice Sci 15:125–130 Gassama-Diagne A, Yu W, ter Beest M, Martin-Belmonte F, Kierbel A, Engel J, Mostov K (2006) Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 8:963–970 Ghosh R, de Campos MKF, Huang J, Huh SK, Orlowski A, Yang Y, Tripathi A, Nile A, Lee HC, Dynowski M, Schafer H, Rog T, Lete MG, Ahyayauch H, Alonso A, Vattulainen I, Igumenova TI, Schaaf G, Bankaitis VA (2015) Sec14-nodulin proteins and the patterning of phosphoinositide landmarks for developmental control of membrane morphogenesis. Mol Biol Cell 26:1764–1781 Grabon A, Bankaitis VA, McDermott MI (2019) The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes. J Lipid Res 60:242–268 Hempel F, Stenzel I, Heilmann M, Krishnamoorthy P, Menzel W, Golbik R, Helm S, Dobritzsch D, Baginsky S, Lee J, Hoehenwarter W, Heilmann I (2017) MAPKs influence pollen tube growth by controlling the formation of phosphatidylinositol 4,5-bisphosphate in an apical plasma membrane domain. Plant Cell 29:3030–3050 Hoffmann RD, Portes MT, Olsen LI, Damineli DSC, Hayashi M, Nunes CO, Pedersen JT, Lima PT, Campos C, Feijó JA (2020) Plasma membrane H+-ATPases sustain pollen tube growth and fertilization. Nat Commun 11:1–15 Huang J, Kim CM, Xuan YH, Park SJ, Piao HL, Je BI, Liu J, Kim TH, Kim BK, Han CD (2013) OsSNDP1, a Sec14-nodulin domain-containing protein, plays a critical role in root hair elongation in rice. Plant Mol Biol 82:39–50 Huang J, Ghosh R, Bankaitis VA (2016a) Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Acta Biochim Biophys Sin 1861:1352–1364 Huang J, Ghosh R, Tripathi A, Lönnfors M, Somerharju P, Bankaitis VA (2016b) Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins. Mol Biol Cell 27:2317–2330 Ischebeck T, Stenzel I, Heilmann I (2008) Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell 20:3312–3330 Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J et al (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570 Jiang H, Yi J, Boavida LC, Chen Y, Becker JD, Kohler C, McCormick S (2015) Intercellular communication in Arabidopsis thaliana pollen discovered via AHG3 transcript movement from the vegetative cell to sperm. Proc Natl Acad Sci U S A 112:13378–13383 Kearns M, Monks D, Fang M, Rivas M, Courtney P, Chen J, Prestwich G, Theibert A, Dewey R, Bankaitis V (1998) Novel developmentally regulated phosphoinositide binding proteins from soybean whose expression bypasses the requirement for an essential phosphatidylinositol transfer protein in yeast. EMBO J 17(14):4004–4017 Kim YJ, Guzman-Hernandez ML, Balla T (2011) A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev Cell 21:813–824 Krahn MP, Wodarz A (2012) Phosphoinositide lipids and cell polarity: linking the plasma membrane to the cytocortex. Essays Biochem 53:15–27 Krishnamoorthy P, Sanchez-Rodriguez C, Heilmann I, Persson S (2014) Regulatory roles of phosphoinositides in membrane trafficking and their potential impact on cell-wall synthesis and re-modelling. Ann Bot 114:1049–1057 Mao YS, Yin HL (2007) Regulation of the actin cytoskeleton by phosphatidylinositol 4-phosphate 5 kinases. Pflug Arch Eur J Phy 455:5–18 Monteiro D, Liu Q, Lisboa S, Scherer GE, Quader H, Malho R (2005) Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J Exp Bot 56:1665–1674 Moon S, Jung KH (2020) First steps in the successful fertilization of rice and Arabidopsis: pollen longevity. Adhes Hydr Plants 9:8 Moon S, Oo MM, Kim B, Koh H-J, Oh SA, Yi G, An G, Park SK, Jung K-H (2018) Genome-wide analyses of late pollen-preferred genes conserved in various rice cultivars and functional identification of a gene involved in the key processes of late pollen development. Rice 11:28 Moon S, Hong WJ, Kim YJ, Chandran AKN, Gho YS, Yoo YH, Nguyen VNT, An G, Park SK, Jung KH (2020) Comparative transcriptome analysis reveals gene regulatory mechanism of UDT1 on anther development. J Plant Biol 63:289–296 Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6:227–233 Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215 Pacini E, Dolferus R (2019) Pollen developmental arrest: maintaining pollen fertility in a world with a changing climate. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00679 Qin Y, Yang ZBA (2011) Rapid tip growth: Insights from pollen tubes. Semin Cell Dev Biol 22:816–824 Sheehan H, Hermann K, Kuhlemeier C (2012) Color and scent: how single genes influence pollinator attraction. In: Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press 117–133 Shewan A, Eastburn DJ, Mostov K (2011) Phosphoinositides in cell architecture. Cold Spring Harb Perspect Biol 3:a004796 Simon MLA, Platre MP, Assil S, van Wijk R, Chen WY, Chory J, Dreux M, Munnik T, Jaillais Y (2014) A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J 77:322–337 Stenzel I, Ischebeck T, Vu-Becker LH, Riechmann M, Krishnamoorthy P, Fratini M, Heilmann I (2020) Coordinated localization and antagonistic function of NtPLC3 and PI4P 5-kinases in the subapical plasma membrane of tobacco pollen tubes. Plants 9:452 Tejos R, Sauer M, Vanneste S, Palacios-Gomez M, Li H, Heilmann M, van Wijk R, Vermeer JE, Heilmann I, Munnik T, Friml J (2014) Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell 26:2114–2128 Teng Y, Lv M, Zhang X, Cai M, Chen T (2022) BEAR1, a bHLH transcription factor, controls salt response genes to regulate rice salt response. J Plant Biol. https://doi.org/10.1007/s12374-022-09347-4 Thole JM, Vermeer JEM, Zhang YL, Gadella TWJ, Nielsen E (2008) ROOT HAIR DEFECTIVE4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell 20:381–395 Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA (2005) A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol 168:801–812 Wang L, Lam PY, Lui AC, Zhu F-Y, Chen M-X, Liu H, Zhang J, Lo C (2020) Flavonoids are indispensable for complete male fertility in rice. J Exp Bot 71:4715–4728